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Abstract. A numerical method for a time-dependent nonlinear partial integredifftial equation (PIDE) is considered. This

PIDE describes a spatial population model that includes a given cgregipacity and the memory effect of this environment.
To deal with this issue an adaptive method of third order in time is considersave storage data in smooth parts of the
solution. Beyond this, a post-processing step adaptively thins out theyhitta.
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INTRODUCTION

We will consider numerical methods for equations with meymar delay. Such equations can, of course, arise as
ordinary or partial differential equations. One of the magjmblems is the data storage during the simulation because
the total history data is needed to compute a new time stegh&gractical experience with the ODE type is
considerably higher and includes a wide range of topics€sgd1], [2]). In this paper we will consider a numerical
method for a nonlinear time dependent partial integroedéfitial equation (PIDE). The existence and uniqueness of
the solution inL; of the population model was proved by Ruess in [3].

t
%—£~D2u(x7t) = f+r~u(x7t)(1—%-u(x,t)—/O K(s)-u(x,s) ds) 1)

u = 0 ondQx(0,Tl,u=up inQ,fort=0

Let T > 0 andQt = Q x (0,T] whereQ is an open bounded region R". u is the density of a populatiom.> 0
defines the growth rate arkd> 0 is the carrying capacity of the environment. The integrattee right represents a
memory effect. It includes a continuous part or maybe thelevhistory weighted by the kernel functidh

In order to solve a sequence of linear initial value problems
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instead of the nonlinear one, we first of all have to lineatiieePIDE.
One of the earliest publications concerning this kind ofauns was published by Sloan and Thomée [4].

Up to the present the research in this area has mainly foarsédear and semi-linear cases ( see e.qg. [5], [6], [7],
[81, [9]). We will use the higher order techniques for linddlDE presented in [10] as ansatz for the non-linear task.
It uses adaptivity in time and a post-processing techniguhih out the memory. This will help to face the problem
of data storage during simulation. Beyond this, it is a higiveer technique and we hope that the order three can be
reached for the non-linear problem as well.

FIX POINT APPROACHES FOR THE NON-LINEAR TERM

We will use a kind of fixed point scheme for the linearizatidiis is a quite common ansatz which has also been
applied to the nonlinear term of the Navier-Stokes-Equeisee e.g. [11]). To do this, we first turn to the semi-discret



case using a BDF(3) scheme:
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Now we will invert the operator on the left. This is possibfelang as the stability conditiofy > rAt(1— % -umtl)

is fulfilled. For At small enough it is always fulfilled, because all parametszpasitive. So in fact this condition will
only be violated for huge time steps. So, as a matter of faist,condition will only be violated in the context of time
steps.
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Now we have got a fixed point problem™* = @(u"*!) As usual, we now have to check whetlgis a contraction.
It can be shown that for a sufficiently smait this is a contraction. Thus we can use this fixed point eqna®
an iteration technique. This fixed point approach is eqaivato substituting - u(x,t) for r - u(x,t) and solving the
following equation:
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In the first iterationuis an extrapolation ofl based on the last time steps, whereas in the following itersiu is the
equal to the value of the last iteration. An alternative tprapch | (3) is approach Il (4):
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Approach Il in (4) is slightly closer to the original probletm (3), however, less terms are linearized. Accordingly,
one could expect a faster convergence. The argument thas @rontraction, is analogous to (3) and requires a
sufficiently smallAt as well. In contrast to the formulation (3), we do not haveatecabout the stability condition,
but as mentioned before, this is only a small advantage iodke of huge time step sizes.

NUMERICAL RESULTS

All numerical tests were computed using the FEM with lineasdfunctions on triangles. For benchmark problem |

d—u—Dzu(x,t) = f+2-u(x,t)(1—-u(x,t)—/tsinz(s)-u(x,s)ds) (5)
dt 0

u = u inQfort=0 (6)

we chose the Dirichlet boundary conditions ahih a way thatu = (%4— %fm)) (1-(x—05)2—(y—0.5)?) is

the exact solution. The computation was performed overithe interval[0,4]. The fixed point iteration was stopped
when the difference between two consecutive steps wasertiadingsi, = 10~ in the maximum norm. In table 1 one
can see that the third order in time could also be reachetifonbnlinear problem. Thinking of increasing CPU-costs
caused by reducing the time step size, one should keep thearwhiterations per time step in mind. Each iteration
means solving a linear PIDE. FAt = 1/8 this was done 160 times, while faAt = 1/32 it was 512 times. So the costs
did not quadruple, the factor is just 3.2. Comparing the aagines | and Il, we observe that with respect to accuracy
both suggested fixed point approaches are almost iderificay. do, however, differ in the number of fixed point iter-
ations. One quite interesting fact is that the second apprivethis example takes less iterations than the first agproa



TABLE 1. Nonlinear test case with fix point approaches | (left) and Il (right) @86egrees of freedom in space)

iterations per iterations per
At [u—un[|"® | quotient| time step At [u—un[I"® | quotient| time step
1/8 2.682e-2 - 5.09 1/8 2.682e-2 - 4.68
1/16 4.336e-3 6.19 4.50 1/16 4.336e-3 6.19 4.33
1/32 5.557e-4 7.80 4.05 1/32 5.557e-4 7.80 3.81
1/64 6.921e-5 8.02 3.57 1/64 6.921e-5 8.02 3.41
1/128 | 8.981e-6 7.71 3.16 1/128 | 9.755e-6 7.09 3.06

For the benchmark problem Il the diffusion is set up wate: 102, the reproductiom = 15 andK(s) = exp(—<?).
On the right, it has no artificial functioh and the exact solution is unknown.

du 1 _, B u(x,t) t
o Tog AU = 15-u(x,t)(1—T—/0 K(s—t)-u(x,s) ds) )
u = 0 ondQx(0,3,;u=u inQfort=0 (8)

As initial condition we set up four probe samples of a popakabn a kind of square island like this:
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TABLE 2. Results for different adaptive and non-adaptive techniques mgfeto a
nonlinear test case in time (33025 degrees of freedom in space).

adaptivity | adaptive | averaged | averaged | quotient| No. of solved | quotient
in time post-proc. At history size linear systems
no no 0.015625 99.5 - 963 (5.015) -
yes no 0.012552 121 1.22 1150 (4.862)| 1.19
yes yes 0.012552 79.74 0.80 1150 (4.862)| 1.19
Every term represents one of four probes samples, and letaué | Ee |

the population model should keep its symmetry during sitmrta
Figure 1 illustrates the behavior of the solution. The refiee so-
lution was computed witl\t = 1/512. To achieve a rating scale,
the point (0.25,0.25), which is the peak of the probe sampkbe s
lower left corner, was chosen. In figure 2, its developmentiss
played. At this point we will use the differencgs; (0.25,0.25,t) =
|ure£(0.25,0.25,t) — uy(0.25,0.25,t)| between the reference solution
and the other approximations as an indicator of the achiaced- .
racy. For a fixed time step size, figure 4 reveals the diffeseAs ol e e
expected, the error is high at the beginning and lower at tideoé e

the simulation. The errors arising in the initial phase ieflge the 4 Udiff(0.25,0.251) for differentAt
simulation for some time and then their impact fades. Thughé beginning this problem requires small time steps,
and later on it is possible to increase them. Using an adapdishnique withAtol = 1le— 5 andRtol = 1e— 4, we

can obtain the results displayed in figure 3. For comparig@nresults for the fixed step siz¢ = 1/64 were added

to the figure. What might seem a bit odd at a first glance is treatifierence for the thinned out history produced
after about = 1.3 is a bit smaller than the one that was computed without thgnrBut this is just a comparison at
one single point. It would presumably be the other way ardiendhe L»-norm. Table 2 gives an impression of the
costs in the context of CPU and memory. In the sixth colummilmaber of linear systems to be solved is denoted.
The value in parenthesis is the average number per time Istismot easy to compare the techniques in lines one
and two because the adaptive approach is generally morg especially at the beginning, but it also requires about
20% more memory and linear systems to be solved. The fulltagagpproach using the history post-processing still
requires about 20% more linear systems but enables us theeutémory usage for the saved history to 80 %. Hence
it would allow a longer simulated time with a stable accuraggnpared to a fixed time step approach.

CONCLUSION AND FUTURE PROSPECTS

An adaptive third order algorithm for a class of partial griedifferential equations was applied to a class of noaline
population dynamic models where higher order in time codddnached and techniques like the adaptive thinning
out of the saved history works as well. A paper including nreiults and an analysis of the presented methods is in
review. Due of the 'local’ nature of the equation and its symeed for memory, distributed computation in style of
domain decomposition methods should be considered in tefutire.
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