
A numerical method for a nonlinear spatial population
model with a continuous delay

Jörg Frochte

Hochschule Bochum, Höseler Platz 2, 42579 Heiligenhaus, Germany, joerg.frochte@hs-bochum.de

Abstract. A numerical method for a time-dependent nonlinear partial integro-differential equation (PIDE) is considered. This
PIDE describes a spatial population model that includes a given carrying capacity and the memory effect of this environment.
To deal with this issue an adaptive method of third order in time is consideredto save storage data in smooth parts of the
solution. Beyond this, a post-processing step adaptively thins out the history data.

Keywords: finite element method, partial integro differential equations, adaptivity in time, higher order, population dynamics, delay
PACS: 02.30.Ks, 02.60.Cb, 2.60Nm, 2.70Dh

INTRODUCTION

We will consider numerical methods for equations with memory or delay. Such equations can, of course, arise as
ordinary or partial differential equations. One of the major problems is the data storage during the simulation because
the total history data is needed to compute a new time step. Sothe practical experience with the ODE type is
considerably higher and includes a wide range of topics (seee.g. [1], [2]). In this paper we will consider a numerical
method for a nonlinear time dependent partial integro-differential equation (PIDE). The existence and uniqueness of
the solution inL1 of the population model was proved by Ruess in [3].

du
dt

− ε ·∇2u(x, t) = f + r ·u(x, t)(1−
1
k
·u(x, t)−

∫ t

0
K(s) ·u(x,s) ds) (1)

u = 0 on∂Ω× (0,T], u= u0 in Ω, for t = 0

Let T > 0 andΩT = Ω× (0,T] whereΩ is an open bounded region inRn. u is the density of a population.r > 0
defines the growth rate andk > 0 is the carrying capacity of the environment. The integral on the right represents a
memory effect. It includes a continuous part or maybe the whole history weighted by the kernel functionK.
In order to solve a sequence of linear initial value problems

d
dt

u+Lu = f +
∫ t

0
K(s− t)u(s) ds in ΩT , (2)

u = û on ∂Ω× (0,T], u= u0 in Ω, for t = 0 ,

instead of the nonlinear one, we first of all have to linearizethe PIDE.
One of the earliest publications concerning this kind of equations was published by Sloan and Thomée [4].

Up to the present the research in this area has mainly focusedon linear and semi-linear cases ( see e.g. [5], [6], [7],
[8], [9]). We will use the higher order techniques for linearPIDE presented in [10] as ansatz for the non-linear task.
It uses adaptivity in time and a post-processing technique to thin out the memory. This will help to face the problem
of data storage during simulation. Beyond this, it is a higher order technique and we hope that the order three can be
reached for the non-linear problem as well.

FIX POINT APPROACHES FOR THE NON-LINEAR TERM

We will use a kind of fixed point scheme for the linearization.This is a quite common ansatz which has also been
applied to the nonlinear term of the Navier-Stokes-Equation (see e.g. [11]). To do this, we first turn to the semi-discrete



case using a BDF(3) scheme:

β0un+1− ε∆t∇2un+1 =
j

∑
i=1

βiu
n+1−i

︸ ︷︷ ︸

:= f2

+∆t f + r∆t ·un+1(1−
1
K
·un+1− Îu)

[

(β0− r∆t +
r∆t
K

·un+1)I − ε∆t ·∇2
]

un+1 = f2+∆t f − r∆t ·un+1Îu

Now we will invert the operator on the left. This is possible as long as the stability conditionβ0 ≥ r∆t(1− 1
K ·un+1)

is fulfilled. For∆t small enough it is always fulfilled, because all parameters are positive. So in fact this condition will
only be violated for huge time steps. So, as a matter of fact, this condition will only be violated in the context of time
steps.

un+1 =

[

(β0− r∆t +
r∆t
K

·un+1)I − ε∆t ·∇2
]−1

(
f2+∆t f − r∆t ·un+1Îu

)
= φ(un+1)

Now we have got a fixed point problem:un+1 = φ(un+1) As usual, we now have to check whetherφ is a contraction.
It can be shown that for a sufficiently small∆t this is a contraction. Thus we can use this fixed point equation as
an iteration technique. This fixed point approach is equivalent to substitutingr · ū(x, t) for r ·u(x, t) and solving the
following equation:

du
dt

− ε ·∇2u(x, t)+(
r
K

ū(x, t)− r) ·u(x, t) = f − r · ū(x, t) ·
∫ t

0
K(s) ·u(x,s) ds (3)

In the first iteration, ¯u is an extrapolation ofu based on the last time steps, whereas in the following iterations,ū is the
equal to the value of the last iteration. An alternative to approach I (3) is approach II (4):

du
dt

− ε ·∇2u(x, t)+
r
K
· ū(x, t)u(x, t) = f + r · ū(x, t)− r · ū(x, t) ·

∫ t

0
K(s) ·u(x,s) ds (4)

Approach II in (4) is slightly closer to the original problem. In (3), however, less terms are linearized. Accordingly,
one could expect a faster convergence. The argument that (4)is a contraction, is analogous to (3) and requires a
sufficiently small∆t as well. In contrast to the formulation (3), we do not have to care about the stability condition,
but as mentioned before, this is only a small advantage in thecase of huge time step sizes.

NUMERICAL RESULTS

All numerical tests were computed using the FEM with linear base functions on triangles. For benchmark problem I

du
dt

−∇2u(x, t) = f +2·u(x, t)(1−·u(x, t)−
∫ t

0
sin2(s) ·u(x,s) ds) (5)

u = u0 in Ω, for t = 0 (6)

we chose the Dirichlet boundary conditions andf in a way thatu =
(

3t
16+

sin(3πt)
4

)

(1− (x− 0.5)2 − (y− 0.5)2) is

the exact solution. The computation was performed over the time interval[0,4]. The fixed point iteration was stopped
when the difference between two consecutive steps was smaller thanε f ix = 10−6 in the maximum norm. In table 1 one
can see that the third order in time could also be reached for this nonlinear problem. Thinking of increasing CPU-costs
caused by reducing the time step size, one should keep the number of iterations per time step in mind. Each iteration
means solving a linear PIDE. For∆t = 1/8 this was done 160 times, while for∆t = 1/32 it was 512 times. So the costs
did not quadruple, the factor is just 3.2. Comparing the approaches I and II, we observe that with respect to accuracy
both suggested fixed point approaches are almost identical.They do, however, differ in the number of fixed point iter-
ations. One quite interesting fact is that the second approach in this example takes less iterations than the first approach.



TABLE 1. Nonlinear test case with fix point approaches I (left) and II (right) (33025 degrees of freedom in space)
iterations per

∆t ‖u−uh‖
max
L2

quotient time step

1/8 2.682e-2 - 5.09
1/16 4.336e-3 6.19 4.50
1/32 5.557e-4 7.80 4.05
1/64 6.921e-5 8.02 3.57
1/128 8.981e-6 7.71 3.16

iterations per
∆t ‖u−uh‖

max
L2

quotient time step

1/8 2.682e-2 - 4.68
1/16 4.336e-3 6.19 4.33
1/32 5.557e-4 7.80 3.81
1/64 6.921e-5 8.02 3.41
1/128 9.755e-6 7.09 3.06

For the benchmark problem II the diffusion is set up withε = 10−2, the reproductionr = 15 andK(s) = exp(−s2).
On the right, it has no artificial functionf and the exact solution is unknown.

du
dt

−
1

100
·∇2u(x, t) = 15·u(x, t)(1−

u(x, t)
10

−

∫ t

0
K(s− t) ·u(x,s) ds) (7)

u = 0 on∂Ω× (0,3], ; u= u0 in Ω, for t = 0 (8)

As initial condition we set up four probe samples of a population on a kind of square island like this:

u0(x,y) = u(x,y,0) =
1

cosh(50(x−0.25))cosh(50(y−0.25))
+

1
cosh(50(x−0.25))cosh(50(y−0.75))

+
1

cosh(50(x−0.75))cosh(50(y−0.25))
+

1
cosh(50(x−0.75))cosh(50(y−0.75))

1: Densityu at different times

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3

re
fe

re
nc

e 
so

lu
tio

n 
at

 (
0.

25
,0

.2
5)

t (time)

2: ure f(0.25,0.25, t)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0  0.5  1  1.5  2  2.5  3

ud
iff

(0
.2

5,
0.

25
,t)

t (time)

dt=1/64
adaptive time step size

adaptive time step size and history postprocessing

3: udi f f (0.25,0.25, t) adaptive and fixed step size



TABLE 2. Results for different adaptive and non-adaptive techniques referring to a
nonlinear test case in time (33025 degrees of freedom in space).

adaptivity adaptive averaged averaged quotient No. of solved quotient
in time post-proc. ∆t history size linear systems

no no 0.015625 99.5 - 963 (5.015) -
yes no 0.012552 121 1.22 1150 (4.862) 1.19
yes yes 0.012552 79.74 0.80 1150 (4.862) 1.19

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  0.5  1  1.5  2  2.5  3

u_
di

ff

t (time)

dt=1/16
dt=1/32
dt=1/64

dt=1/128

4: udi f f (0.25,0.25, t) for different∆t

Every term represents one of four probes samples, and because f = 0
the population model should keep its symmetry during simulation.
Figure 1 illustrates the behavior of the solution. The reference so-
lution was computed with∆t = 1/512. To achieve a rating scale,
the point (0.25,0.25), which is the peak of the probe sample in the
lower left corner, was chosen. In figure 2, its development isdis-
played. At this point we will use the differenceudi f f (0.25,0.25, t) =
|ure f(0.25,0.25, t)−uh(0.25,0.25, t)| between the reference solution
and the other approximations as an indicator of the achievedaccu-
racy. For a fixed time step size, figure 4 reveals the difference. As
expected, the error is high at the beginning and lower at the end of
the simulation. The errors arising in the initial phase influence the
simulation for some time and then their impact fades. Thus, in the beginning this problem requires small time steps,
and later on it is possible to increase them. Using an adaptive technique withAtol = 1e− 5 andRtol = 1e− 4, we
can obtain the results displayed in figure 3. For comparison,the results for the fixed step size∆t = 1/64 were added
to the figure. What might seem a bit odd at a first glance is that the difference for the thinned out history produced
after aboutt = 1.3 is a bit smaller than the one that was computed without thinning. But this is just a comparison at
one single point. It would presumably be the other way aroundfor the L2-norm. Table 2 gives an impression of the
costs in the context of CPU and memory. In the sixth column thenumber of linear systems to be solved is denoted.
The value in parenthesis is the average number per time step.It is not easy to compare the techniques in lines one
and two because the adaptive approach is generally more exact, especially at the beginning, but it also requires about
20% more memory and linear systems to be solved. The full adaptive approach using the history post-processing still
requires about 20% more linear systems but enables us to cut the memory usage for the saved history to 80 %. Hence
it would allow a longer simulated time with a stable accuracycompared to a fixed time step approach.

CONCLUSION AND FUTURE PROSPECTS

An adaptive third order algorithm for a class of partial integro differential equations was applied to a class of nonlinear
population dynamic models where higher order in time could be reached and techniques like the adaptive thinning
out of the saved history works as well. A paper including moreresults and an analysis of the presented methods is in
review. Due of the ’local’ nature of the equation and its strong need for memory, distributed computation in style of
domain decomposition methods should be considered in the near future.

REFERENCES

1. E. Buckwar,Monte Carlo Methods and Applications10, 235–244 (2004).
2. L. Göllmann, D. Kern, and H. Maurer,Optimal Control Applications and Methods30, 341–365 (2009).
3. W. Ruess,Advances in Differential Equations4, 843–876 (1999).
4. H. Sloan, and V. Thomée,SIAM J. Numer. Anal.23 (1986).
5. V. Thomée, and N.-V. Zhang,Mathematics of Computation53, 121–139 (1989).
6. N.-Y. Zhang,Mathematics of Computation60, 133–166 (1993).
7. Y. Lin, V. Thomée, and L. B. Wahlbin,SIAM J. Num. Ana.28, 1047–1070 (1991).
8. A. K. Pani, V. Thomée, and L. B. Wahlbin,Journal of Integral Equations and Applications4, 231–252 (1992).
9. A. K. Pani, and T. E. Peterson,SIAM Journal on Numerical Analysis33, 1084–1105 (1996).
10. J. Frochte,Numerical analysis and applied mathematics. AIP Conference Proceedings1048, 213–216 (2008).
11. J. Frochte, and W. Heinrichs,J. Comput. Appl. Math.228, 373–390 (2009).


