Regression learning on patches

Joerg Frochte
Bochum University of Applied Sciences
D 42579 Heiligenhaus, Germany
joerg.frochte @hs-bochum.de

Abstract—Neural networks often do poorly at representing dis-
continuous functions, or even just functions with rapid transitions
in the response surface between closely-spaced points in feature
space. However, such ‘edges’ in the data can be a useful way to
partition the feature space in order to train specialised learners
for individual regions. This is particularly beneficial where these
regions are relatively simple, and hence low-complexity learners
can be used successfully on them. Another benefit of such an
approach is that it is easily parallelisable: the specialised learners
use independent partitions of the data, and so they can be
trained in parallel, while output prediction is based on the
output of just one network, so there is no need to combine
predictions. We introduce an algorithm to partition the data that
is inspired by Finite Element Tearing and Interconnecting. Using
an implementation based on a decision tree with neural networks
at the leaves, we demonstrate our approach for regression
learning on patches of the feature space. We use both artificial
and real-world datasets to show that, in some use cases, this
method can outperform conventional neural networks that see
the entire feature set in the original training.

Index Terms—neural networks, finite elements, regression
learning, decision trees, discontinuous functions

I. INTRODUCTION

The universal function approximation theorems of neural
networks date back to the late 1980s and are well-known.
They state that a single hidden layer neural network with non-
linear neurons in that layer can approximate any continuous
function to arbitrary accuracy [1], given a sufficiently wide
hidden layer. These results have recently been extended to
deep networks, where depth can replace arbitrary width [2].
However, these theorems only apply to continuous functions,
and many datasets are, at best, only piecewise continuous. As
well as true discontinuities, there are also places where the
response function varies rapidly in the inputs, and without
large amounts of training data at precisely these places, the
output of a neural network can show large errors at these
locations.

Instead of approximating such response surfaces using a
single neural network, we investigate whether or not it can
be beneficial to separate the domain into discrete patches, and
train individual learners on each of these patches. Variations
on such techniques have been considered in Finite Element
modelling, where one seeks to approximate solutions to sets
of partial differential equations (PDE) on some domain by
splitting the domain into subregions and merging solutions on

978-1-7281-2547-3/20/$31.00 ©2020 IEEE

Stephen Marsland
School of Mathematics and Statistics
Victoria University of Wellington, Wellington, NZ
stephen.marsland @ vuw.ac.nz

each of these regions. In this paper, we develop a technique
inspired by a method from finite elements known as Finite
Element Tearing and Interconnecting (FETI) [3] to develop a
practical approach to approximating discontinuous functions,
and other functions with sharp variations in the response
surface, using neural networks.

There are further benefits to considering such a domain
decomposition. One is that some datasets consist of disjoint
regions in feature space, where the data can potentially be ap-
proximated very simply within each region (an analogy would
be an image, where regions corresponding to objects such as
sky or ground would be locally self-similar, but markedly
different from each other). Hence a way to identify these
local regions can enable relatively simple models of individual
regions of the response surface, instead of building a complex
monolithic model. Another benefit is that—in contrast to the
finite element setting—these functions act independently on
their own regions, and so can be learned in parallel, with no
need to find computationally expensive ways to recombine
them.

A pictorial example is shown in Figure 1, where the
two-dimensional feature space can be partitioned based on
discontinuities in the output variable y, so that within each
patch a simple model of y can be fitted. The discontinuities
between the patches make it hard for a standard neural
network to learn. However, it seems intuitively clear that,
if an initial stage of learning can be used to identify these
regions, an independent approximation of each region would
be as simple as a constant function. This approach leads to
local methods that—in contrast to global approaches—will be
able to approximate discontinuities between the regions more
efficiently and lead to parallelised training.

Figure 2 shows a very simple example that highlights that
standard neural networks do not do well at dealing with
discontinuities, but also highlights an important issue. The aim
is to learn a model of the function

y = f(z) =sign(z) +2°, -1 <z <1, (1)

which has a discontinuity or shock in the response surface.
We sampled 10,000 points without noise from this data, and
then trained several different models on the data.

Both plots show the output (in red) of a single neural
network with three hidden layers of sizes 16, 8, and 8 and
a single linear output neuron (other neurons have sigmoidal
activation). This monolithic network does a reasonable job

Fig. 1. Schematic of a dataset showing (very approximately) piecewise linear
regions of output data y on clearly defined regions of the feature space of
variables x1 and x2.

-
—
10 '_._.,—/ 10 —

-10 R 1

_ /,,......._'
~ ~
_ yZ - /
151]

-20 -20
-100 -075 -050 -025 000 025 050 075 100 -100 -075 -050 -025 000 025 050 075 100
X X

Fig. 2. Approximation with the single network (16,8,8) in red and with a
model composed by two simple MLPs: left: with a perfect cut at z = 0 and
right: with a misplaced cut at x = 0.01.

of approximating the function; the mean absolute error is
0.004. However, a highly complex network was required, and
an effect similar to the Gibbs phenomenon (overshoot at a
jump discontinuity, which corresponds to the ringing effect in
images) at the discontinuity = = 0 is visible. The black line in
the plot on the left of Figure 2 corresponds to the output of two
neural networks, each with two hidden layers of two neurons
each, with the networks being defined on P, = [—1,0] and
P, = (0,1] respectively. This combination of two networks
has just over 10% of the weights of the single network, but
achieves an error of 0.003.

The main challenge of this approach is shown on the right
of the figure, where the same networks are used, but with
the neural networks being defined on P; = [—1,0.01] and
P, = (0.01, 1] instead. In this case, the model makes errors at
the discontinuity, showing how important it is to identify the
sharp ‘edges’ in the response surface accurately.

Our approach is thus to find a partition of the feature space
into a set of mutually disjoint patches (which we call data
space partitioning) and then to separate the data into the
corresponding patches, and train simple, independent, models
on each patch. This leads to a method that is computationally

extremely cheap and inherently parallelisable. The cheapness
comes from the non-linear effect of the quantity of training
data on the computational complexity of neural network train-
ing. The training time of neural networks is largely driven by
the complexity of the network and the number and dimension
of the samples. The latter is the main aspect that makes
learning on patches cheaper: each network is trained with
fewer samples, and the effect is nonlinear. Of course, fewer
samples also often require lower complexity networks.

Due to the fact that each of the small networks is inde-
pendent and trained on separate data, all of these networks
can be trained concurrently under the ‘embarrassingly parallel’
paradigm (in other words, it requires no programming effort
or special constructions to parallelise the algorithm). The cost
of the neural network training is then the maximum time to
train any of the individual simple algorithms. In this paper we
discuss the design requirements of such a method and intro-
duce a simple algorithm to achieve it, which we demonstrate
on both an example inspired by finite element methods and a
real-world dataset concerning weather prediction.

II. DATA SPACE PARTITIONING

We assume that we have a dataset D = (X,Y’), where
individual datapoints r € X e Y CR"andy €Y € Y C R,
where the response surface has spatial discontinuities or other
‘edges’ in the data. The aim is to partition the feature space
X into subsets P,—where by partition we mean split into
mutually disjoint, non-empty subsets that cover XY—in such a
way that the output variables y € Y can be approximated as
simply as possible within each subset. This partitioning can
be based on all the features in the data, or a subset of features
can be used; such features can be chosen based on a priori
knowledge, chosen randomly, or based on some exploration
of the dataset.

The aim of our data space partitioning is to identify spatially
contiguous sections of the feature space that have a relatively
simple function that can explain them. One machine learning
algorithm that obviously aims to perform such a split is
the decision tree, which performs greedy optimisation of an
information-based criterion at each stage of learning to identify
the feature to split at each node of the tree. As we are interested
in regression problems, CART [4] is a suitable method of
training, which we use in our current implementation. These
partitions can then be turned into data patches, each of which
is the basis for an independent neural network trained solely
on the data in that patch. We specify an upper limit k£ on the
number of patches; this can be equal to the number of leaf
nodes in the tree, or can be made smaller in order to force
the algorithm to combine partitions into patches, which can
be done by finding neighbouring patches that are similar.

The choice to make the partitions mutually disjoint is in
contrast to the finite elements case, where overlapping subsets
can be useful to increase the stability of the convergence pro-
cess. For machine learning, there are two principal benefits to
disjoint partitions: it simplifies the parallelism significantly, as
there is no need to combine estimates, and it reduces some of

the dimensionality issues that arise otherwise. Finite element
methods are generally used to model physical systems, and so
are typically in two or three spatial dimensions. Suppose that
we have data sampled uniformly at random in d dimensions.
If we partition the data using hyper-rectangles, with a border
region of p per cent of the edges lengths in each dimension,
then the number of samples in the border region increases
significantly as the dimensionality rises: the percentage of the
data that is not in an overlapping partition is (up to corner
effects):

100—2-p\“
100 '

For ten dimensional data with a 5% border region, only about
one third of the data would be in a single partition.
We summarise our approach in Algorithm 1.

percentage of data in a single partition ~ (

Algorithm 1 Learning on Patches (LOP)

1: procedure TRAIN(z € X,y € Y))
Require: £ >1,c>1 > k = max # patches, ¢ = min #
samples per patch
Require: A configuration A for the local neural networks
2: Divide the feature space X into patches P; using, e.g.,
CART, controlled by ¢
3: If the number of patches is > k, combine patches of
most similarity to get k patches
for each patch P; do
Scale/Standardise z|p, and y|p, (i =1...k)
Train a neural network of configuration A on P;
end for
end procedure
procedure PREDICT(z € X))
10: Identify the patch P;(i = 1...k) that represents x
11: Use the neural network associated with P; to make a
prediction
end procedure

° XD

»

There are a few issues with using CART, or indeed any other
decision tree algorithm. Firstly, the algorithm chooses binary
splits in a single feature, meaning that the partitions are axis-
aligned hyperplanes, while secondly the optimisation aims to
eventually replace each output with a constant function. A
related observation to the second point is that, owing to the
fact that the data is very unlikely to be uniformly distributed
over the domain, the partioning can result in some empty or
very sparsely populated patches. This means that training an
ANN on these patches is not useful.

The second of these problems is relatively easy to solve by
restricting the tree so that it never gets deep enough to model
every leaf as a constant function. There are three parameters
that could be used for this: the maximum depth of the tree,
the maximum number of leaf nodes, or the minimum number
of samples remaining in a leaf node. The first two are related,
but can be different in the event that the tree is substantially
unbalanced. We choose to use the second or third to control
the amount of search. One benefit of the third is that another

consideration with regard to the number of samples in each
patch is that it is a factor (although there are obviously others,
such as complexity of the response surface) in the speed of
training. In the interests of efficiency, it then makes sense to
keep the number of samples per patch as equal as possible, as
we will discuss shortly.

The use of axis-aligned hyperplanes is potentially very
limiting, although it is partially alleviated by the fact that
we combine partitions into patches. The key issue is that
any other method of performing the search will be compu-
tationally far more expensive. We experimented with a post-
pruning approach that recombined patches in order to generate
more flexible borders, but saw very limited improvements for
significant additional computational costs; we will explore this
further in future work.

We suggested that one heuristic for limiting the decision tree
search is to attempt to keep the number of samples per patch as
similar as possible. This leads to the question of whether or not
the decision tree is necessary: an alternative, model-free, way
to perform data partitioning is to specify a number of patches,
and then simply choose the patches so that they have equal
numbers of datapoints within them. This completes ignores the
properties of the problem, but has the benefit that the ANN
training is as efficient as possible, because each patch with
have similar computational cost. However, the dimensionality
of the feature space is then an issue. To identify appropriate
patches in feature space is computationally very expensive:
considering just one split in each feature means that there
are 2% possible splitting in d dimensions. A dimensionality
reduction algorithm such as PCA could be used to reduce this
complexity, but this only alleviates the problem rather than
removing it.

Following data partitioning, all that remains is to train a
neural network on each data patch. As the partitioning process
has already limited the range of data in each feature, it is
helpful to standardise the features for each network.

III. EXPERIMENTS AND RESULTS

We present results comparing our method with a standard
multi-layer Perceptron (MLP), based on the Keras/Tensorflow
implementation. The tree was built using the CART regression
tree “DecisionTreeRegressor” in Scikit-Learn [5]. The size of
the tree can be controlled by the minimum number of samples
per leaf, or maximum number of leaves, as previously dis-
cussed. The local learners for each patch were MLPs, trained
using early-stopping and with a mild L, regulariser (1 x 107%).
For simplicity, all these MLPs had the same size and depth;
the depth matched that of the reference, monolithic, MLP,
trained with the same regularisation. We report the accuracy
and speed-up in training time, for a sequential implementation
on a single core (Intel Core 19-9900KF Processor 3.6 GHz). As
was mentioned previously, it is possible to trivially parallelise
our algorithm. We therefore also give the longest training time
of an individual network as a guide to the potential speed-up
of simply parallelising the training of the neural networks.

A. An artificial dataset with a discontinuous feature space

Our first example is an analytical dataset that has some
similarities to Figure 1. We consider a five-dimensional fea-
ture space (x € [0,1]°), with the function—particularly the
discontinuities—being dominated by variables x; and x5:

y(x) =In(xs +5) (47% + 923 + %)
+ 2sin(207 - zyzax5) + P2y, 22),

9, (3:1,332) S [035,06}2

where P(z1,22) = 10, (z1,22) € [0.75,1.0)?
VT 5, (21,22) € 10.75,1.0] x [0,0.25]
0, otherwise.

2)

We sampled 400,000 datapoints uniformly at random from
this from this dataset, and added Gaussian noise with variance
equal to 5% of the range of outputs. The data was split into
80% training and 20% testing.

Table I shows results for different settings of the number of
patches (chosen by decision tree in the first set (ID 1-3), and to
equalise the number of datapoints per patch in the second (ID
4-6)) and network complexity for this example, together with
two monolithic neural networks (ID 7 and 8) for comparison.
It can be seen that relatively complex networks were needed
to achieve a reasonable mean absolute error (MAE).

Even using our sequential implementation, the LOP results
are significantly faster than the monolithic networks. This is
because there are fewer sample datapoints for each network, so
that each epoch is cheaper. However, the networks are trained
for more iterations before the learning terminates; the right of
Figure 4 shows that the networks trained for over 200 epochs
in all cases of LOP; in comparison the standard MLPs took
144 epochs for the larger network (ID 8 in Table I) and 200
epochs for the smaller (ID 7). The change in overall training
time for these two models (132%) is almost linear with the
increase in epochs (1.38), suggesting that the amount of data
used for training and the number of epochs are the dominant
factors. The maximal time for training a single patch shows a
similar effect.

Comparing the tree-based patches with the balanced ones
it can be seen that the MAE is similar in the two. This is
rather surprising, since the latter does not place splits at the
discontinuities. However, the maximum error is worse for the
equal partitions, which presumably reflects this.

In Figure 3 we show a two-dimensional plot of the data
we used in this example in variables 1 and x5, with colour
representing the value of the target variable y, together with
the residual error for different models. It can be seen that
the monolithic ANN has problems with all borders of the
discontinuity. In general, LOP splits along the borders, except
for the upper border of the middle patch. Looking at the
decomposition of the feature space into patches, it can be seen
that the light green patch does not honour the border, meaning
that the local model is no better than the global one at this
point.

This artificial problem shows the weaknesses of both par-
titioning approaches. If there are hard breaks in the model
then the decision tree can have trouble capturing them exactly:
using the CART algorithm as a separator is no guarantee of a
perfect cut. In real-life datasets that have milder changes, the
precise position of the cut seems to matter less, as we shall
see.

B. Heat distribution data

In this example we consider the kind of problem for
which finite elements are commonly used. We simulate the
distribute of heat as it is conducted from a heat source
located at (h,,0.1) with a diameter of 0.025 cm for a time
20 s < tp <120 s. The material is a two-dimensional copper
square with an edge length of 0.1 cm. The letters “AI” have
been removed from the centre of the square; the resulting air
gap transports the heat more slowly than the copper. The heat
distribution changes at the boundaries of the letters, but it is
continuous.

The goal is to predict the temperature at a point z,y
in the square for given h, and t;. Therefore, we have
four-dimensional feature space (z,y,h.,t,). We created
1,929,008 data records for training and 492,707 for testing.
The testing set does not share any records with the same
parameter tuple (h,t5), so that the problem is not a simple
spatial interpolation.

As a sample configuration, we created a set of patches
by using the two-dimensional (x,y) coordinates as inputs to
CART, and specified that the tree retained at least 50,000
training samples per leaf node. This resulted in a tree with
31 leaf nodes (depth 5). Data corresponding to each of these
31 patches was then used to train a separate neural network
with three hidden layers of 25 neurons each. As comparator
we used a single neural network with three hidden layers of
100 neurons each. Figure 5 shows that both approaches have
trouble at the borders of the letters, but the errors are more
noticeable for the global ANN. This is borne out by the MAE,
which is 0.017 for the LOP approach, and 0.031 for the global
ANN. Further, sequential training took 130 minutes for LOP,
as opposed to 270 for the single ANN. This is despite the
fact that in this case the LOP set-up has more than double
the total number of parameters: 44,950 as opposed to 20,800.
The most expensive patch took around 400 seconds (just under
7 minutes) to train, meaning that the parallel implementation
would be significantly faster again.

C. A weather dataset with a continuous model illustrating the
feature selection for patch building

As a final example of our approach, we used some real-
world data: prediction of the hourly air temperature based on
a set of atmospheric data. The data came from the Murdoch
University Weather Station (http://wwwmet.murdoch.edu.au/
downloads). We used the data from 2005 to 2009 as train-
ing and validation data (a total of 196,055 records), each
comprising twelve input features (month, day, wind speed
and direction (10 minute average and standard deviation),

X2

0.8

0.6 1

0.4

0.2

0.0 4

0.8

0.6 1

0.4

0.2

0.0 4

ID | # patches Network MAE | Max Total Max single
Architecture error | time (min, %) | time (min, %)
1 20 (75,75) tree 0.42 7.7 9.5 (49%) 2.3 (12%)
2 26 (50,50) tree 0.51 8.19 9.8 (50%) 2.1 (11%)
3 40 (30,30) tree 0.62 8.91 9.6 (49%) 1.2 (6%)
4 16 (75,75) equal 0.41 8.9 10.8 (55%) 1.4 (7%)
5 25 (50,50) equal 0.54 8.9 9.7 (50%) 0.9 (5%)
6 36 (30,30) equal 0.63 8.4 9.5 (49%) 0.6 (3%)
7 1 (75,75) mono 0.48 9.6 19.4 (99%) 19.4 (99%)
8 1 (150,150) mono | 0.39 10.1 19.5 (100%) 19.5 (100%)
TABLE I

RESULTS FOR DIFFERENT NETWORK CONFIGURATIONS SOLVING THE ANALYTICAL DATASET EXAMPLE PROBLEM

0.0 0.2 0.6 0.8

0.0 0.2 0.4 0.6

X1

0.8

10

0.8

0.6

X2

0.4

0.2

0.0

1.0
10
0.8 1
0.8
0.6 0.6
< o
2
0.4 0.4
0.2 0.2
0.0 4 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x1 x
10
10 10
8 08 ! 8
6 06 6
=
" 0.4 a
5 02 N
0.0
0 0
0.0 02 0.4 0.6 08 10 0.0 0.2 0.4 0.6 0.8 1.0

x

Fig. 3. Upper left: Plot of the x1 — x2 plane of the analytical dataset with colour representing the value of the target variable y. Upper middle:
20 patches chosen by the LOP algorithm (ID 1). Upper right: Plot of the residual error using tree-partitioned LOP (ID 1). Lower left: Plot of the residual
error using equal-point LOP (ID 5). Lower middle: Plot of the residual error using tree-partitioned LOP (ID 2). Lower right: Plot of the residual error for a
monolithic MLP (ID 7).

Learning on 26 Patches

20

40 60 80

Execution Time [Seconds]

100 120

140

Learning on 25 Patches

Y

o

IS

~

30

35 40

45

Execution Time [Seconds]

Validation Loss

25

20

Results for 26 Patches

50 100 150

Epochs

200 250

10

set of

Fig. 4. For the analytical dataset, execution time for LOP learning with left: tree-based partitioning with 26 patches (ID 2 in Table I) and middle: equal
dataset-based partitioning (ID 5). Both have an ANN with two hidden layers of 50 nodes each for each patch. Right: validation loss for ID 2

1.0 1.0
0.8 0.8
o ¥ .

0.6 0.6 1 8
0.4 0.4

0.2 0.2

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.16 0.16
1.0

014 0.14

[
012 08 o, n¢ 012
<° oF

0.10 0.10
0.6

0.08 0.08
041

0.06 0.06

0.04 45 | 0.04

0.02 0.02
0.0

0.00 . . . ‘ . . 0.00

0.0 02 0.4 0.6 0.8 10

Fig. 5. Left: A sample normalised heat distribution. Middle: Error plots for normalised target values at t;, = 71 secs at position 0.0515 m for LOP with
31 patches. Right: Error for monolithic ANN with architecture (4,100,100,100,1).

patches Network Feature MAE | Max Total time Max single
Architecture Separation Error (min, %) time (min, %)
25 (13,) tree 4 of 4 (PCA) 2.59 16.09 8.0 (55%) 0.9 (6%)
25 (13,) tree 6 of 12 1.95 9.21 6.3 (43%) 0.6 (4%)
25 (13,) tree 12 of 12 1.91 11.35 6.7 (46%) 0.6 (4%)
24 (3,2,2,2) (13,) equal 4 of 4 (PCA) 2.62 18.72 7.3 (50%) 0.7 (5%)
36 (3,3,2,2) (13,) equal 4 of 4 (PCA) 2.65 17.04 8.0 (46%) 0.5 (3%)
32 of 64 (13,) equal first 6 of 12 2.01 35.03 7.7 (55%) 0.8 (6%)
28 of 64 (13,) equal selected 6 of 12 | 2.07 23.88 8.2 (57%) 1.0 (7%)
22 (500,10) mono - 1.85 28.7 14.5 (100%) 14.5 (100%)
TABLE 1T

RESULTS FOR DIFFERENT NETWORK CONFIGURATIONS LEARNING THE WEATHER DATASET

error distribution using LOP all features for patching

10000

8000

6000

4000

2000

17500

15000

12500

10000

7500

5000

2500

error distribution using LOP all features for patching

error distribution using MLP

17500

15000

12500

10000

7500

5000

2500

10 -20 -25 -20 -15 -10 -5 0 5

Fig. 6. Plots of the error distribution for (left to right): the LOP tree with all 12 features, the equal dataset partitioning on all 12 features, and the monolithic
MLP. Note that the axis scalings differ between them, as the LOP tree produces a significantly lower error rate.

Learning on 32 Patches Learning on 25 Patches

161

14

124

10

0 10 20 30 40 50 5 10 15 20 25 30 35
Execution Time [Seconds] Execution Time [Seconds]

Fig. 7. Plots of the execution time for LOP with (left:) equal dataset partitioning, and (right:) tree-based partitioning. Again, note that the y-axis differs
between the plots. While there are some very expensive patches for the equal partioning, most are very quick to train.

evaporation, barometric pressure (3 measures), rainfall to date
and relative humidity) and a single output (temperature). The
test data was taken from 2010 (51,857 records).

To build the patches, we selected six of the twelve features
(month, hour, wind speed, wind direction average and standard
deviation, rainfall) and built a tree with a minimum number of
6,000 samples per leaf node, leading to 25 leaf nodes, each of
which was used as a patch. In this test case the networks on
each leaf node are very small: just one hidden-layer, with 13
neurons. Using this set of networks on the 25 patches leads to
a MAE of 0.0399. The monolithic network had two hidden-
layers: the first with 500, and the second with 10 neurons. The
result is a MAE of 0.0510. It took just under 20 minutes to
train the dense network, and just under 10 minutes to train all
of the small networks sequentially, with the longest taking 38
seconds.

We also used LOP with all 12 features. The patches that
were found this way were very similar, and the MAE of the
final method was not significantly different (0.0389).

In low dimensional spaces (two or three dimensions) the
choice to perform equal distance patching can perform quite
well. But in higher dimensions it is not feasible to split each
feature axis even once. In this problem which has 12 input
dimensions, we would end up with 2'2 = 4096 patches.
Instead, we consider a subset of the features; considering just
the first 6 means that there are 64 patches. However, most
of them are empty, since partitioning the data in this way
highlights how much of input feature space contains no data
points. In this example, just 33 patches have data and so can
support their own ANN. This suggests that the higher the
dimensionality of the input space, the more a tree is a better
way to partition it.

It is also possible to use PCA to use PCA to reduce the
feature space before learning. By reducing the feature space in
this way it is far less likely that there will be empty patches.
For the equal patch method there were two different PCA
configuations, with the difference being the number of split
points allowed for each feature. However, it can be seen that
the MAE is less good with this method.

IV. RELEVANT LITERATURE

The basis of our method is a way to partition the feature
space so that individual patches can be approximated by
relatively simple learners. In this implementation described
in this paper we mainly use a decision tree to perform this
partition, although as we discuss, other methods could be
used. However, this makes our approach most related to model
trees [6], which build single decision trees and then prune them
back by considering the replacement of each leaf with a linear
regressor, progressing back up the tree.

There have been other relevant extensions of decision trees,
such as putting linear regressors on the leaves of a tree [7],
creating a look-ahead linear regression tree [8], or seeking
to compute a globally convex regression tree by partitioning
a dataset by devising a tree that has linear outputs at the
leaves [9]. However, these methods do not consider the general

approach that we describe here, because they focus on enhanc-
ing the tree as a learning algorithm, while our approach uses
it mainly for the partition of the feature space.

Another set of related approaches are the soft decision
tree [10], [11] and its variants such as the adaptive neural tree
[12]. In contrast to our aim of partitioning the feature space
prior to most of the learning, these approaches effectively turn
the tree itself into a neural network, so that all the leaves
have performed computation on the features close to the root
of the tree, and have less in common at lower levels of the
tree. Conceptually these models can be traced back to the
Hierarchical Mixture of Experts model [13].

In contrast to ensemble methods, such as boosting [14] and
random forests [15] (and see e.g., [16] for an overview), our
method does not aggregate the output of many learners, but
produces specialised learners that are only trained on data from
specific subsets of the feature space. Hence prediction consists
of identifying the relevant patch of feature space, and then
using only the local model associated with that patch. This
makes the process more efficient in both training and testing.

One motivation for our approach was the methods of domain
decomposition used in the numerical solution of PDEs; see
e.g., [3]. For parallel training of dense neural networks, there
are two main approaches: data-parallelism (mainly batch-
splitting) and model-parallelism. Batch splitting, see e.g.,
[17], suffers from several problems when training very large
models. On the other hand, the analysis of the graph of deep
neural networks mostly used for model-parallelism rely on
the structure of the neural network to find paths that can
be separated, which may not exist for dense networks, with
their highly connected structure. In terms of data-parallelism
and model-parallelism our approach combines both and is
therefore able to lead to a much higher potential. We divide
the data into patches and build a specific model on each patch.
The main difference to standard model-parallelism is that we
do not parallelise a model for the full feature space but build
several single models. Beyond this, standard approaches like
batch-splitting are still an option for each of the specialised
models.

V. CONCLUSION

We have presented a method of learning by partitioning
of the feature space that is computationally cheap and in-
herently parallelisable, since it works by training completely
independent models on partitions of the data, something that
can be trivially parallelised for substantial savings in elapsed
training time. In our implementation here the method is based
on standard machine learning algorithms. On the datasets we
have tested it on it produces results that are at least comparable
with far more computationally complex models.

There are still several questions that we have not yet
considered fully. One of the most important is to find other
computationally cheap ways to find partitions; as discussed
earlier, CART is effective, but only works for axis-aligned
cuts. It might be that a method from change detection, or a
simple clustering in feature space could be useful, and we

will test this in the future. Another interesting question is
concerned with model selection. We have used the same neural
network architecture for all partitions in this implementation,
but heuristics and methods from AutoML could be used to
choose different models for each of the local partitions. It
would also be possible to let the networks grow adaptively on
individual patches if the results were not sufficiently accurate
on them. In this way, the complexity of the learner on each
patch could be specialised.

In order to aid comparisons with the monolithic ANN, in
this paper we used a sequential implementation. However,
we have highlighted the benefits of our algorithm for parallel
training. Our results demonstrate that by learning on patches
one can achieve the same accuracy, and often even better, than
with monolithic neural networks. However, the embarrassingly
parallel nature of the approach means that the speedup that is
possible using this approach is substantial even without any
programming effort.

The method is most effective where there is a clear edge
between regions of the feature space, although in these cases
it is particularly important that the position of the edge is
identified accurately. It may be that this has particular benefits
for classification, rather than regression, problems, and we will
investigate this soon. We will also consider ways to detect
when new data is presented in currently sparsely occupied
regions of the feature space.

ACKNOWLEDGMENT

SM is supported by Te Piinaha Matatini, a New Zealand
Centre of Research Excellence in Complex Systems.

REFERENCES

[1] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems (MCSS), vol. 2, no. 4, pp.
303-314, 1989.

[2] Z. Lu, H. Pu, G. Wang, Z. Hu, and L. Wang, “The expressive power
of neural networks: A view from the width,” in Advances in Neural
Information Processing Systems, 2017.

[3] C. Farhat and F.-X. Roux, “A method of finite element tearing and in-
terconnecting and its parallel solution algorithm,” International Journal
for Numerical Methods in Engineering, vol. 32, no. 6, pp. 1205-1227,
1991.

[4] L. Breiman, J. H. Friedman, and C. J. Olshen, R. A.and Stone,
Classification and regression trees. Wadsworth & Brooks, 1984.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

[6] E. Frank, Y. Wang, S. Inglis, G. Holmes, and I. H. Witten, “Using
model trees for classification,” Machine learning, vol. 32, no. 1, pp.
63-76, 1998.

[71 A. Dobra and J. Gehrke, “SECRET: A scalable linear regression tree
algorithm,” in Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2001.

[8] D.S. Vogel, O. Asparouhov, and T. Scheffer, “Scalable look-ahead linear
regression trees,” in Proceedings of KDD, 2007.

[9] L. A. Hannah and D. B. Dunson, “Multivariate convex regression with
adaptive partitioning,” Journal of Machine Learning Research, vol. 14,
pp- 3261-3294, 2013.

[10] A. Sudrez and J. F. Lutsko, “Globally optimal fuzzy decision trees for
classification and regression,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 21, no. 12, pp. 1297-1311, 1999.

[11] N. Frosst and G. E. Hinton, “Distilling a neural network into a soft
decision tree,” in CEX workshop at AI*IA, 2017.

[12] R. Tanno, K. Arulkumaran, D. Alexander, A. Criminisi, and A. Nori,
“Adaptive neural trees,” in Proceedings of the 36th International Con-
ference on Machine Learning, ser. Proceedings of Machine Learning
Research, vol. 97, 2019, pp. 6166-6175.

[13] M. I Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the
EM algorithm,” Neural Computation, vol. 6, no. 2, pp. 181-214, 1994.

[14] R. Schapire, “The boosting approach to machine learning: An overview,”
in Nonlinear Estimation and Classification, D. D. Denison, M. H.
Hansen, C. Holmes, B. Mallick, and B. Yu, Eds. Berlin, Germany:
Springer, 2003.

[15] T. K. Ho, “Random decision forests,” in Proceedings of the 3rd Inter-
national Conference on Document Analysis and Recognition, 1995, pp.
278-282.

[16] Z.-H.Zhou, Ensemble Methods: Foundations and Algorithms. Chapman
and Hall/CRC, 2012.

[17] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young et al., “Mesh-tensorflow:
Deep learning for supercomputers,” in Advances in Neural Information
Processing Systems, 2018, pp. 10414-10423.

