
A Learning Approach for Ill-Posed Optimisation
Problems

Jörg Frochte1 and Stephen Marsland2

1 Bochum University of Applied Sciences, D 42579 Heiligenhaus, Germany
joerg.frochte@hs-bochum.de

2 Victoria University of Wellington, NZ stephen.marsland@vuw.ac.nz

Abstract. Supervised learning can be thought of as finding a mapping
between spaces of input and output vectors. In the case that the func-
tion to be learned is multi-valued (so that there are several correct output
values for a given input) the problem becomes ill-posed, and many stan-
dard methods fail to find good solutions. However, optimisation problems
based on multi-valued functions are relatively common. They include re-
verse robot kinematics, and the research field of AutoML – which is
becoming increasingly popular – where one seeks to establish optimal
hyperparameters for a learning algorithm for a particular problem based
on loss function values for trained networks, or to reuse training from
previous networks. We present an analysis of this problem, together with
an approach based on k-nearest neighbours, which we demonstrate on a
set of simple examples, including two application areas of interest.

Keywords: Multi-valued functions · Ill-posed optimisation · Local mod-
els · AutoML

1 Introduction

Consider a standard regression problem. Given a training set S = (x, y) of pairs
of input and target data, we aim to identify a function h(x) such that

y = h(x) + ε, (1)

where the ε term gives the residual error and is a function of the data and the
particular form of regression used.

Implicit in this model is the assumption that the problem is well-posed, i.e.,

1. a solution exists,
2. the solution is unique, and
3. the solution is stable (its behaviour changes continuously with respect to the

initial conditions).

Ill-posed problems – a class that includes many inverse problems – can be
very important. We will focus on problems that do not have a unique solution,
so that there is more than one possible target for a given input, which are

2 J. Frochte and S. Marsland

known as multi-valued functions. As shall be discussed shortly, this class of
problems includes inverse kinematics and a form of automated machine learning
(AutoML).

Standard regression techniques do particularly poorly on these problems,
finding solutions between the two possible correct results. For example, consider

the cylindrical spiral given by y2 = tan−1
(

x2

x1

)
, x1, x2 ∈ [−1, 1], which is a

variant on that suggested in [9]. Note that this corresponds to the mapping be-
tween Cartesian and polar coordinates. As can be seen on the left of Figure 1,
there are two correct targets for each input pair (x1, x2), and the multilayer Per-
ceptron (MLP) fails to find either solution. Local approaches such as k-nearest
neighours also fail, albeit in a slightly different way. We will revisit this problem
in Section 3.1, but on the right of Figure 1 demonstrate that our approach finds
both solutions to this multi-valued problem.

Fig. 1. Left: The MLP (blue) finds an incorrect solution to a multi-valued function
consisting of the spiral shown in red. Right: Our approach finds both solutions.

The heart of the problem lies in the fact that so-called multi-valued functions
define a left-total binary relationship [8]. A binary relationship takes ordered
pairs (x ∈ X, y ∈ Y) for sets X and Y , and assigns it to some subset of the
Cartesian product X × Y = {(x, y) : x ∈ X, y ∈ Y }. As it is defined on ordered
pairs, there can be many y that match an x and vice-versa, and there may also
be some y ∈ Y that do no have a relationship with any x and vice versa; see
also [5], which considers the learning of such relationships. A left-total binary
relationship requires that at least one y exists for each x, but does not require
that it is unique. Obviously, such functions are not globally invertible.

This is why inverse problems so commonly have this form: consider the inverse
kinematics problem from robotics. In this classic regression problem, the old
adage that all roads lead to Rome (i.e., there are many paths to reach any given
location of the end-effector) means that the inverse is not properly defined. While
adding regularisation functions such as aiming to minimise energy or time can

A Learning Approach for Ill-Posed Optimisation Problems 3

help, there is still no guarantee of a unique, and therefore potentially invertible,
solution.

One way to deal with this lack of global invertibility is to appeal to the im-
plicit function theorem, and create local invertible approximations of the func-
tion. Providing that the regions of the domain with matching points in the
codomain are sufficiently separated, this can work well, as was shown in [6]
where networks of radial basis functions were used to approximate the multi-
valued function. However, there will always by pathological examples where this
assumption breaks down. As was discussed in [6], there is no guarantee that an
appropriate partition of the data can be found, and even if there is, the implicit
function theorem requires that the function is continuously differentiable, which
may not be true in general.

Fig. 2. Trying to separate solutions by clustering is not easy if the relationship is
complicated, as in the centre picture. DBSCAN produces the set of clusters shown on
the right.

In fact, this problem can be made worse if the data is clustered first to aid in
the selection of partitions, as Figure 2 shows. If both solutions (red and black)
are easy to separate, as in the left problem set, clustering works well. If their
relationship is more complicated, as in the middle of the figure, one ends up
with a lot of problems. The right plot shows the result of using DBSCAN [4],
which is dependant on the parameters. As one can see, the subsets identified by
clustering do not necessarily consist of data from one solution (which we call
‘pure’). Increasing the number of clusters makes them pure, but tends towards
local learners.

For some problems there is additional structure to the problem that can be
exploited. This is true for inverse kinematics, where there is a time progression
that gives order to the data samples: the data is generated as a sequence fi : t 7→
Rn = y of several functions fi, each providing a mapping between the same start
and end points. The set of different trajectories performing the same mapping
provide enough structure for neural networks to find good approximations, such
as the RNNs used by [13] and the standard feedforward networks of [9] and
[1]. Beyond this, [11] presents an approach using regularisation networks that
includes learning an algebraic representation of the multi-valued function, while
in [2] the authors extend a hierarchical Dirichlet process hidden Markov model

4 J. Frochte and S. Marsland

to a multi-valued function regression. One of the most recent publications in
this branch is [3], which uses an approach based on an infinite mixture of linear
experts, thus enabling online learning.

Consider now the example of automatic machine learning (AutoML), which
aims to automate the whole process of selecting machine learning algorithms,
fitting hyperparameters, and optimising them, see e.g., [14]. One way to formu-
late this problem is as an optimisation problem. Data are presented as triples
consisting of a description of a learner such as a neural network, a set of weight
values for it, and the value of the loss function of that network on some dataset:
(θ, x, fD(x, θ)), where the D subscript labels the dataset that was used for test-
ing. A set of such triples comprise the training set for an optimisation problem.
In more general terms, this can be written as minx f(x, θ), where f(·) is the
objective function (e.g., the neural network loss function, or some function to
minimise such as energy, or cost), x are the variables we wish to optimise over
(the weights of the neural network), and θ is a set of parameters that specify
the precise problem. Note that this formulation includes multi-objective optimi-
sation automatically using some of the elements of vector θ as weights for these
parts of the objetive function, e.g., f(x, θ) = θ1f1(x, θ) + θ2f2(x, θ).

In general, the dataset consists of noisy samples, such as the weights and loss
function values of trained neural networks with particular sets of hidden layers,
or certain examples of inverse kinematic solutions. In neither case is it likely that
the dataset contains the actual global optimum.

We now present an extension to the k-nearest neighbour algorithm for opti-
misation of multi-valued functions, and demonstrate that it is well-behaved with
respect to hyperparameter choices on a variety of test cases, including a simple
example from AutoML.

2 A clustering-based algorithm for multi-valued functions

Our algorithm is a variant of the partition approach that was described previ-
ously. For a given value of vector θ, we identify the points in the dataset that
are closest (in the Euclidean norm) to that value and then cluster those points
into c or fewer clusters based on a weighted sum of their coordinates using kNN
(where di = θ−θi and smear is a parameter that smoothes the kNN regression):

x(θ) =

k∑
i=1

ωixi with ωi =
(di + smear

k)−1

d
and d =

k∑
i=1

(
di +

smear

k

)−1
(2)

The pseudocode for our algorithm is given in Algorithm 1. The algorithm
works in three stages: we find a large set of points close to θ, and then refine
it to the points in that set with smallest f(θ, x) values. These points are then
clustered into c clusters, which are post-processed to remove clusters with fewer
than k members, and retain the k points that are nearest with respect to θ for
the rest. It is not necessary to specify c exactly, as is shown in Figure 3.

A Learning Approach for Ill-Posed Optimisation Problems 5

Fig. 3. It is not necessary to identify the number of clusters precisely. The algorithm
is searching for points close to the θ value marked with a black triangle. Left: When
there are two clusters, setting c = 2 means that two clusters are identified. However,
right: the same parameter value when there are three clusters will merge two of the
clusters, resulting in a spread of potential points. However, when the points nearest to
each other in every cluster are identified, only the blue dots in the blue cluster will be
considered.

The k samples in a cluster are used with (2) to find the regression value of
f(x, θ). The values at f(xi, θ) could be used as weights, but we found that this
did not improve the results much, and was computationally more expensive.

In the clustering step it is possible to use any clustering algorithm. We have
tested k-means and fuzzy C-means, as they have a small number of hyperpa-
rameters and distribute points across as many clusters as possible. Note that
although kNN is often described as a lazy learner, it is common to build a kd-
tree or similar of all the distances to enable nearest neighbours to be found as
efficiently as possibly. This is the approach used in e.g., scikit-learn [10].

Finally, we note that although the algorithm is intended to work with the
function values f(x, θ) (score), it is possible to use it in cases where this infor-
mation is not available. In that case n = 1, and there is no need to perform line
3 and the regression of f at the final step in line 7. The first example in the next
section considers this type of example.

3 Experiments and Analysis

3.1 Regression without score

We first consider the example shown in the Introduction, in order to show that
the algorithm is equivalent to other multi-valued function learners if the function
values f(x, θ) are not provided. We sampled 20,000 points from the curve shown

6 J. Frochte and S. Marsland

Algorithm 1 The kNN-MV Algorithm

1: procedure kNN-MV(x, θ, f(x, θ))
Require: k ≥ 1, c ≥ 1 . k = #neighbours, c = #output classes
Require: 2 ≤ m ≤ 4, 1 ≤ n ≤ 3 . m and n control #points in neighbourhoods
2: N̂ = the indices of the a · k ·m · n nearest neighbours of θ
3: N = the a · k ·m examples in N̂ with lowest values of f(x, θ)
4: cluster the points in N into c clusters according to distance with respect to x .

e.g., using k-means
5: for each cluster do
6: if cluster has < k members then return ∅
7: else use the k points closest to each other for the regression of θ and f(x, θ)

using (2)
8: end if
9: end for

10: end procedure

in red in Figure 1, adding noise at the boundaries 0 and
√

4π, as they tend to
overlap, leading to more choices, and set c = 2.

Table 1 shows that the algorithm works well and is stable with respect to
added noise; see also the right of Figure 1. It is hard to compare exactly with [9],
as not all details are provided there, but they report a root mean square error
(RMSE) of about 1.85 · 10−2, which is comparable to ours, and we make fewer
assumptions about the structure of the solution.

Table 1. Results using the parameters k = 3, smear= 1, a = 2, m = 4.

Percentage of noise on x in training data
0% 1% 2% 3% 4%

one correct answer 100 % 100 % 100 % 100% 100%
two correct answers 91.2 % 92.8% 91.0% 91.9 % 89.9%
AME 6.5 · 10−4 8.2 · 10−3 1.6 · 10−2 2.5 · 10−2 3.2 · 10−2

RMSE 8.1 · 10−4 1.1 · 10−2 2.2 · 10−2 3.4 · 10−2 4.4 · 10−2

3.2 An analytical test case

As a simple example of the core usage of our method, we considered the function:

f(x, θ) = 3− exp(20(−(x1 − θ1)2 − (x2 − θ2)2))

− exp(20(−(x1 − θ2 + 1)2 − (x2 − 0.5θ21)2))

− 0.95 exp(20(−(x21 − θ2)− (x2 + θ3 + 0.5)2))

The problem consists of finding the multiple solutions to arg minx∈R2 f(x, θ)
for fixed θ ∈ R3.

A Learning Approach for Ill-Posed Optimisation Problems 7

We created 429,618 samples by computing numerical solutions by gradient
descent from random initial starting points. Note that the space also has local
minima, and so many of these numerical solutions will have become stuck in
them. Table 2 shows the results with k = 3 and k = 5 for both the standard
kNN and our multi-value version, while Figure 4 looks at the effect of the two
parameters,m and n. The table shows that the method is far more successful that
standard kNN, even at finding one solution, while the figure demonstrates that
the algorithm is not very sensitive to the choice of the parameters. In general,
1.5 ≤ n ≤ 2.5 and 2 ≤ m ≤ 4 is a good range. Beyond this one can see in table
2 that using the score in kNN-MV, which means in this application the value of
the function f , leads to better results.

Table 2. Results using kNN and kNN-MV (k = 3 k = 5, m = n = 2.5).

Method % answers with average error
one result both results on answers

Standard kNN (k=3) 21.70% 00.00% 0.0042
kNN4MV (k=3) without score 89.44% 62.12% 0.0072
kNN4MV (k=3) with score 99.82% 83.20% 0.0083
Standard kNN (k=5) 13.11% 00.00% 0.0357
kNN4MV (k=5) without score 91.85% 64.48% 0.0073
kNN4MV (k=5) with score 99.92% 85.35% 0.0094

3.3 Shot on Goal Learning

We now present a more interesting example, which combines kinematics – as
common application area – with an ill-posed optimisation problem. Suppose
that a robot is aiming to kick a ball into a soccer goal in such a way that it goes
over the goalkeeper’s head, as shown on the left of Figure 5, by learning from
examples. We model the path of the ball via a non-linear ordinary differential
equation that includes the four fixed components of θ shown on the right of the
figure with their allowable ranges. In fact, we will allow the wind speed θw to
vary, and assume that the agent knows only the sign of it, not the value. The
controllable parameter is the velocity of the ball x(t) at t = 0. We represented
x(0) in polar coordinates as (ϕ, s) pairs of direction and speed.

We judged that a goal was scored if the ball arrives at the the goal at a height
between 2.1 and 2.4 metres above the ground, with angle of travel ϕ < −0.5
degrees. We created a large number of examples that satisfied these criteria, and
gave them a score based on their height and angle when the ball crossed the
goalline: f(x, θ) = x2 + |ϕ|/2, i.e., height + half the angle.

There are two very different strategies that can achieve this successfully,
corresponding to two different angles of initial velocity. The higher angle strategy
receives higher scores, but because the ball is in the air longer, it is more affected
by the random wind. We computed 30,000 successful goal scoring examples by

8 J. Frochte and S. Marsland

1 2 3 4 5
0

0.5

1

1.5

2
·10−2

m

E
rr

o
r

[M
A

E
]

20

40

60

80

100

A
n
sw

er
s

[%
]

Correct first answer

Correct second answer

Mean absolute error

1 2 3 4
0

0.5

1

1.5

2
·10−2

n
E

rr
o
r

[M
A

E
]

20

40

60

80

100

A
n
sw

er
s

[%
]

Correct first answer

Correct second answer

Mean absolute error

Fig. 4. Results of varying m with a constant n = 2 (left) and varying n for a constant
m = 2.5 (right).

θw ∈ [−4, 4][m/s] (wind speed)
θm ∈ [0.25, 0.75] [kg] (ball mass)
θr ∈ [0.05, 0.2] [m] (ball radius)
θd ∈ [10, 80] [m] distance to goal

Fig. 5. Schematic showing a successful shot on goal, and the parameters of θ with their
allowable range.

brute force as an initial training set. Our approach to this was as follows: (ϕ, s)
pairs and values for θ were chosen by kNN-MV and evaluated. Those that were
successful in scoring a goal were saved, with their score. For the others, we
performed a search around that ϕ of ±5◦, reducing that to ±1◦ as more entries
were added to the dataset, and finally stopping using the search at all.

The top line of Figure 6 shows the final distribution of samples in the training
set for two parameters of θ, ball radius and distance to the goal, while the bottom
line shows them with respect to the two components of x, ϕ and s. Samples were
created uniformly at random, but only successful samples were added to the
database. Hence the non-uniform distributions with respect to these variables
suggest where there are fewer successful solutions, and hence the problem is
harder.

A Learning Approach for Ill-Posed Optimisation Problems 9

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Ball Radius [m]

0

2500

5000

7500

10000

12500

15000

17500

Sa
m

pe
ls

in
 D

at
ab

as
e

10 20 30 40 50 60 70 80
Distance to Goal [m]

0

2500

5000

7500

10000

12500

15000

17500

20000

Sa
m

pe
ls

in
 D

at
ab

as
e

40 60 80 100 120 140 160 180
Launch Velocity

0

5000

10000

15000

20000

25000

Sa
m

pe
ls

in
 D

at
ab

as
e

20 30 40 50 60 70 80 90
Launch Angle

0

1000

2000

3000

4000

5000

6000

7000

8000

Sa
m

pe
ls

in
 D

at
ab

as
e

Fig. 6. Histogram of the distribution of solutions in the training database with respect
to top row: fixed parameters (for a datapoint) θr and θd and bottom row: solution
parameters ϕ and s.

We train a multi-layer Perceptron, kNN, and kNN-MV (both with k = 5)
using the dataset created above. To test the algorithms, we ran each of them
as follows. A random configuration was chosen for θ. Three of the values were
then held fixed, and four samples of wind strength θw were chosen (which the
learner does not know), all with the same sign (which the learner does know).
The learner than generated four choices of (ϕ, s). The percentage of successful
shots, and the score achieved by the most successful shot, are given in Table 3.
Note that this is not an easy problem, and we consider that the near 40% of
kNN-MV is a good result.

Table 3. Results of learning agent using three supervised methods for different limits
for the distance to the goal.

Maximum Distance
Method 20m 30m 40m 60m 80m

% score % score % score % score % score

MLP 4.74 2.71 0.21 2.70 0.60 2.70 0.67 2.68 1.65 2.68
kNN 15.11 2.70 11.83 2.68 9.81 2.66 8.35 2.65 6.88 2.64

kNN-MV 36.82 2.60 39.14 2.59 37.12 2.59 33.20 2.59 27.30 2.58

10 J. Frochte and S. Marsland

3.4 A Simple AutoML Example

The fact that a multi-layer Perceptron with a single hidden layer of 2 nodes and
a total of 9 weights can solve the XOR problem is well-known. There are actually
six different solutions for the weights, up to scaling, which arises because there
are three different ways to construct XOR from more basic logical operators:

x1 XORx2 = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) (3)

= (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) (4)

= (x1 ∨ x2) ∧ ¬(x1 ∧ x2) (5)

The first bracket term is represented by one hidden unit and the second by
another, while the final AND/OR-operation is performed by the output layer.
Hence, the network has three ways to choose the weights, and a symmetry in
the order of the operators.

One goal of AutoML is to reuse old models to speed-up the design of new
ones. Learning the weights of a neural network involves solving a multi-valued
problem because different configurations of the weights can result in very similar
performances, see e.g. [7], [12].

a

b

1

x1

x2

1

c y

w11

w21

w12

w22

b1

b2

ŵ1

ŵ2

b̂

Hidden
layer

Input
Layer

Output
Layer

Fig. 7. MLP with one Hidden Layer for XOR

We took a standard XOR problem, and applied a rotation α ∈ [−45◦,+45◦]
and a translation [t1, t2], with 0 ≤ ti ≤ 0.5. The result is the set illustrated in
figure 8.

Our AutoML problem is to find values for the 9 weights of the neural network
(see Figure 7) based on a set of trained networks for different values of θ =
(α, t1, t2) with the assistance of values f(x, θ) being the value of the loss function
(sum-of-squares error). The database only contains solutions with f(x, θ) < 0.1.

Table 4 shows the results on this example problem for training databases
with 500 and 1000 samples in the training set. In each case kNN-MV was able

A Learning Approach for Ill-Posed Optimisation Problems 11

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Fig. 8. Affine transformation of an XOR Training Set.

to find at least one solution. The algorithm produced 600 solutions during the
test, since there are 6 possible different weights (up to scaling). % sol. is the
percentage of those solutions that were found. As mentioned before, kNN-MV
can predict the quality of the solutions as well. Therefore the column |q − loss |
is the mean difference between the predicted value of the loss function and the
real one during the test, where loss is the mean value of the loss function for
that solution. Finally, class is 1 if all are classified correctly and 0 if none are.

Table 4. Success of KNN-MV (k = 5) of different sizes of training databases, all values
are mean average over 100 test problems.

samples in training set
500 1000

% sol. |q − loss | class loss % sol. |q − loss | class loss

89.6% 0.11 0.94 0.170 90.3% 0.0479 0.98 0.0998

4 Conclusions

In this paper we have considered the setting of multi-valued functions in gen-
eral, and then presented a kNN variant that learns about these functions in
general, and for ill-posed optimisation application cases in particular. Our algo-
rithm shows good results on a set of example problems, which includes a simple
application in AutoML. We have shown that a global approach decomposing
the multi-value functions cannot be performed without making strong assump-
tions concerning the nature of the database, e.g. time-series data. Nevertheless,
one of our future prospects is to use the presented method as the nucleus of a
mixed lazy and eager learner with the goal of achieving higher-order regression
on trusted subsets of the database. We will also be applying our algorithm to

12 J. Frochte and S. Marsland

real-world, higher-dimensional datasets. The used datasets and simulation codes
in this paper are published on the authors website.

References

1. Brouwer, R.K.: Feed-forward neural network for one-to-many mappings using fuzzy
sets. Neurocomputing 57, 345–360 (2004)

2. Butterfield, J., Osentoski, S., Jay, G., Jenkins, O.C.: Learning from demonstra-
tion using a multi-valued function regressor for time-series data. In: Humanoid
Robots (Humanoids), 2010 10th IEEE-RAS International Conference on. pp. 328–
333. IEEE (2010)

3. Damas, B., Santos-Victor, J.: Online learning of single-and multivalued functions
with an infinite mixture of linear experts. Neural computation 25(11), 3044–3091
(2013)

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining. pp. 226–231
(1996)

5. Goldman, S.A., Rivest, R.L., Schapire, R.E.: Learning binary relations and total
orders. SIAM Journal on Computing 22(5), 1006–1034 (1993)

6. Hahn, K., Waschulzik, T.: On the use of local rbf networks to approximate multival-
ued functions and relations. In: L. Niklasson, M.B., Ziemke, T. (eds.) Proceedings
of the 8th International Conference on Artificial Neural Networks (ICANN). pp.
505 – 510. Springer (Sep 1998)

7. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: Neural net-
works for perception, pp. 65–93. Elsevier (1992)

8. Kilp, M., Knauer, U., Mikhalev, A.: Monoids, Acts and Categories, With Applica-
tions to Wreath Products and Graphs. de Gruyter (2000)

9. Lee, K.W., Lee, T.: Design of neural networks for multi-value regression. In: Neural
Networks, 2001. Proceedings. IJCNN’01. International Joint Conference on. vol. 1,
pp. 93–98. IEEE (2001)

10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

11. Shizawa, M.: Multivalued regularization network-a theory of multilayer networks
for learning many-to-h mappings. Electronics and Communications in Japan (Part
III: Fundamental Electronic Science) 79(9), 98–113 (1996)

12. Sussmann, H.J.: Uniqueness of the weights for minimal feedforward nets with a
given input-output map. Neural networks 5(4), 589–593 (1992)

13. Tomikawa, Y., Nakayama, K.: Approximating many valued mappings using a recur-
rent neural network. In: Neural Networks Proceedings, 1998. IEEE World Congress
on Computational Intelligence. The 1998 IEEE International Joint Conference on.
vol. 2, pp. 1494–1497. IEEE (1998)

14. Wong, C., Houlsby, N., Lu, Y., Gesmundo, A.: Transfer learning with neural
automl. In: Advances in Neural Information Processing Systems. pp. 8356–8365
(2018)

