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Abstract The numerical solution of a parabolic convection diffusion equation with
delay term is considered. This includes both variants, the initial value problem and
the prehistory problem. Equations with a delay or memory term, often called inte-
grodifferential problems, appear in different contexts of heat conduction in materials
with memory, viscoelasticity and population models. This work concentrates on the
linear convection diffusion case of the prehistory and the initial value problem. One
problem concerning delay or memory problems is the data storage. To deal with
this problem an adaptivity method of third order in time is developed to save stor-
age data at smooth parts of the solution. Numerical results for higher Péclet numbers
are presented.

1 Introduction

Let T > 0 and QT = Ω × (0,T ] where Ω is an open bounded region in Rn. First let
us consider a parabolic partial integrodifferential equation of the kind

d
dt

u−Au = f +
∫ t

0
B(t,s)u ds in Ω , (1)

u = û on ∂Ω ,

u = u0 in Ω , for t = 0 ,

with a linear elliptic operator A and a problem depending operator B. Such equations
appear for example (see [12], [9], [3], [2] chapter 1) in different contexts of heat
conduction in materials with memory, viscoelasticity and population models. These
models tend to be nonlinear, but of course first the numerical behaviour of linear
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problems has to be studied. Up to now the research in this area has been concentrated
on linear and semi-linear cases, see e.g. [11], [5] [7], [6]. We will study a special
case of (1).

d
dt

u− ε∇2u+ k ·∇u = f +
∫ t

0
K(s− t)u ds in Ω , (2)

u = û on ∂Ω ,

u = u0 in Ω , for t = 0

We call this the initial value problem and we also consider the prehistory problem:

d
dt

u− ε∇2u+ k ·∇u = f +
∫ t

t−d
K(s− t +d)u ds in Ω , (3)

u = û on ∂Ω ,

u = uhistory in Ω , for t ∈ [−d,0]

K is a C1(R → R) function called kernel, ε > 0 is the diffusion coefficient and
k ∈ C0(Rn → Rn) the convection coefficient. In the prehistory case, d is the fixed
length of the delay.
So additionally to the common problems of partial integrodifferential equations like
e.g. memory storage we have to deal with the problems arising in the context of
convection diffusion equations. With a rising global Péclet number defined as

Pe =
hΩ‖k‖max

ε
(4)

hΩ is the characteristic length of the domain Ω . To solve this problem we will use
linear finite elements with streamline diffusion stabilisation, see e.g. [8] for details.
One of the first approached solver strategies for the initial value problem was pub-
lished in [10] and uses a left trapez rule to deal with the integral term and a backward
Euler scheme for the time discretisation. The result is a scheme of first order for the
initial value problem. If we apply this to our initial value problem (2) we achieve:

un+1 −un

Δ t
− ε∇2un+1 + k ·∇un+1 = f + Δ t

n

∑
j=0

K( jΔ t)un− j (5)

To deal with the memory storage problem of the integral term e.g. Thomée advo-
cates integration techniques of higher order so that not every time step has to be
stored.
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2 Higher order integration scheme

In this paper we propose another approach. First we present a higher order scheme
for a fixed time step size using a third order discretisation in time, in our case the
BDF schemes, which is suitable to deal with stiff problems. The higher order in
the integral term is performed using hermite interpolation. The resulting integration
scheme is independent of the discretisation τ = {t0, ...tn} in time so that we can
straightforward apply common mechanics for adaptive time step size control to the
scheme.

2.1 Integration using hermite interpolation

Let us consider a function f̂ (t) : R → R and let t j < t j+1 ∈ D f̂ . So, if we have

f (t j), d
dt f (t j), f (t j+1) and d

dt f (t j+1) we can interpolate f on [t j, t j+1] with a cubic
polynomial. Let now the functions in our integral term at a fixed point x̂ ∈ Ω be
denoted as

f̂ (t) := K(t − t1) ·u(x̄, t) .

We can now first interpolate f̂ (t) using the cubic hermite interpolation over [t j, t j+1]
with s = (t − t j)/(t j+1 − t j) and

ut j = (1+ 2s)(1− s)2, ut j+1 = (3−2s)s2 (6)

vt j = s(1− s)2, vt j+1 = −s2(1− s) . (7)

Thus we get:

f̂ (t)≈ p(t)= ut j(t) f̂ (t j)+ut j+1(t) f̂ (t j+1)+(t j+1−t j)
(

vt j (t)
d f̂ (t j)

dt + vt j+1(t)
d f̂ (t j+1)

dt

)
This cubic polynomial can be integrated exactly by using Simpson’s rule.

∫ t j+1

t j

f̂ dt ≈
∫ t j+1

t j

p dt =
t j+1 − t j

2

(
f̂ (t j)+ f̂ (t j+1)

)
+

(t j+1 − t j)2

12

(
d f̂ (t j)

dt
− d f̂ (t j+1)

dt

)

If we now combine this approach with a time discretisation of third order we obtain
a method of third order in time. Now there is the question left how to evaluate

f̂ (t)
dt

= u(x̄,t) · dK(t − t1)
dt

+K(t− t1) · du(x̄, t)
dt

of the same order as the time discretisation. While we generally assume that dK(t−t1)
dt

is given as an analytical expersion, if not we use the same technique as described for
u below, we will have to approximate du(x̄,t)

dt anyway. To do this we again choose a
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BDF approach of the same order as the one used for the time discretisation. Gener-
ally it is supposed to compute du(x̄,t)

dt once and save it, so that the CPU costs are only
spent once. Of course, alternatively it is possible to trade CPU time vs. memory and
compute du(x̄,t)

dt in every time step.

This approach can be applied in the inner part of the integral. It will not work with
the recently added part of the delay integral [t n, tn+1]. Because un+1 is unknown we
have to treat it different from the ones before. Many approaches are possible like an
extrapolation, a kind of predictor-corrector scheme etc.. In numerical test it turns out
that the influence of this part is generally small enough just to use the left trapezium
rule for the subsequent exampels.
We also have to consider the lower limit of the integral. In this case we have to dis-
tinguish between the initial value and the prehistory problem. In both cases it is not
clear how to compute an approximation for du(x̄,0)

dt , respectively du(x̄,−d)
dt . For in the

prehistory case it is quite easy, we can approximate du(x̄,−d)
dt using forward instead

of backward differences. In the initial value case we can use the same ansatz, but
not right from the start. We have to wait a few time steps until enough data has been
accumulated. So in the case of the initial value problem until the third time step we
will only have an approximation of first or second order for the integral term.

2.1.1 Numerical Results

Let us now consider the following prehistory testproblem:

d
dt

u− ε∇2u+ k ·∇u = f +
∫ t

t−4
K(s)u ds t ∈ [0,4] , (8)

with K = exp(s− t). f is chosen in a way that

u =
g(t)

2cosh(a(x−m))cosh(a(y−n))
(9)

is the solution. With g(t) = (sin(2πt)+ 1)/2 we call this testproblem I.

To verify the order in time we choose the parameters (a = 1, ε = 1 and k = (1,1) t)
for the testproblem which causes only minor difficulties in space. In table 1 the
results for hermite approach with BDF(3) are displayed. Until the error in space
becomes dominant we can see reduction rates of third order. For higher Péclet num-
bers the stabilisation of the galerkin method is performed by streamline diffusion.
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Table 1 Results for the hermite integration and a BDF(3) scheme on testproblem I.1 with a = 5.
The left table shows the order in time and the right one the behaviour for different Péclet numbers.

Δt Pe ‖u−uh‖L2 Quotient
1/8 1 1.322e-2 -
1/16 1 1.794e-3 7.369
1/32 1 2.274e-4 7.889
1/64 1 2.847e-5 7.987

1/128 1 4.112e-6 6.923

Δt Pe ‖u−uh‖L2

1/32 100 2.274e-4
1/32 101 9.301e-4
1/32 102 1.286e-3
1/32 103 1.329e-3
1/32 104 1.335e-3

2.2 Adaptive step size control

One major advantage of the presented hermite integration scheme is the fact that we
are able to choose the time step size in every step independent of the ones chosen
before. So we are only limited by the used time stepping technique. With a variable
step size the coefficients of the BDF scheme have to be recomputed in every time
step. For BDF(3) we achieve:

β3 =
(t j+1 − t j)(t j+1 − t j−1)(t j+1 − t j)

(t j−2 − t j−1)(t j−2 − t j)(t j−2 − t j+1)
; β2 =

(t j+1 − t j)(t j+1 − t j−2)(t j+1 − t j)
(t j−1 − t j−2)(t j−1 − t j)(t j−1 − t j+1)

β1 = (−1)
(t j+1 − t j−2)(t j+1 − t j−1)

(t j − t j−1)(t j − t j−2)
; β0 = 1−β3 −β2 −β1

To construct an adaptive scheme we need an approximation ū h(t j+1) to compare
the computed solution uh(t j) with. The computation of this approximation should
require low CPU costs, however it should not force the algorithm to unnecessary
changes in the time step size. To achieve this we use an extrapolation of third order
based on the polynomial of the BDF scheme:

γi =
k

∏
j=0, j �=i

tn+1 − tn+1− j

tn+1−i− tn+1− j , γ0 = 1−
k

∑
i=1

γi ūn+1 =
k

∑
i=0

γiu
n−i

Now we set up the error function as follows:

η = ‖ūn+1−un+1
Δ tn ‖ ≤ Rtol ·max{‖ūn+1‖,‖un+1‖}+ Atol = E , (10)

with two parameters Rtol and Atol to be chosen and the solution u n+1
Δ tn computed

with the time step size from the last time step. Based on this the next time step size
is chosen as follows:

hn+1 = αhn α =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.75 , if
(

E
η

)1/4
< 0.75(

E
η

)1/4
, if 0.75 ≤

(
E
η

)1/4 ≤ 1.25

1.25 , if < 1.25
(

E
η

)1/4

For the used variable step size BDF scheme the choice of Δ t n+1 is restricted by the
conditions published by Grigorieff, see [4] and [1]. For the most practical problems
the boundaries published by Grigorieff are quite pessimistic so that for our solver
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we choose 0.75 ≤ α ≤ 1.25 instead of 0.836 ≤ α ≤ 1.127 from [4].

� � � � � ��

� � � � � ��

� � � � � ��

a] new time step size is equal to last time step size

b] new time step size is smaller then the old time step size

c] new time step size is bigger then the old time step size

delay length

delay length

delay length

Fig. 1 An outline of the different cases concerning prehistory problems and adaptivity

For the initial value problem the adaptivity can be applied straightforward. We have
just to add the new value to the history. Considering the prehistory problem there is
some additonal work to do. We have to watch carefully that for any new time step
size Δ t the delay integral is of the given length d. To this we have to consider three
different cases illustrated by figure 1. Let Δ t 0,Δ t1, ...,Δ tn−1 be the time stepsize
(=interval length) of the last n time steps and u(t 0),u(t1), ...,u(tn) the corresponding
values of the solution. If Δ t n = Δ t0, case a] in fig.1, we are in the same case as for
the non-adaptive technique. We have just to delete Δ t 0 and u(t0) from the history.
In the case that Δ tn < Δ t0 (b]) we interpolate u at the required position t n+1−d and
set Δ t0 := t1 − (tn+1 − d). Finally the case Δ tn > Δ t0 (c]) is left. Here like in case
a] we first delete the first value and afterwards continue as in case b].

2.2.1 Numerical Results

If we choose Atol = Rtol =5e-4 in the error indicator (10) we would expect the
error control to achieve an accuracy of 1e-3 on the unit square. If we now consider
the result for the testproblem I in figure 2, we can see that this accuarcy has been
achieved. We can see from our test that if we use the presented adaptive approach
the error indicators used for parabolic partial differential equations without delay
can also be used for problems with a delay. But one should keep in mind that prob-
lems with a delay are more sensible than problems without a delay and so smaller
tolerance parameters have to be chosen for a required accuracy compared to a prob-
lem without delay.

Let us consider now the testproblem II:
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Fig. 2 For the adaptive approach with Atol = Rtol = 5e−4 we see the L2-Error on the left and on
the chosen dt the right.

d
dt

u− ε∇2u+ k ·∇u = f +
∫ t

t−2
K(s)u ds t ∈ [0,4] , (11)

with K = sin(10s). f is chosen in a way that

u =
g(t)

2cosh(a(x−m))cosh(a(y−n))
(12)

with a = 1 and g(t)= exp(−|t−2|) is the solution. The solution u is non-differentiable

Fig. 3 This figure shows the
behaviour of the solution
computed with a fixed time
step size and the one with an
apdaptive chosen time step
size in the region around the
non-differentiable point t = 2.
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at t = 2 and so it contains a special challenge, especially for higher order multistep
methods like BDF schemes, compared to onestep methods. Beyond this, we as-
sumed that u ∈ C1[0,4] when we used the hermite interpolation. Table 2 displays
the results for testproblem II for two fixed time step sizes and the adaptive chosen
one. Figure 3 and table 2 show that this is an intrinsic problem for this technique but
it does not tend to diverge in the case the assumptions are violated.
But comparing the result for dt = 1/64 and dt = 1/128 we see that the reduction rate
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Table 2 Results for the hermite integration and a BDF(3) scheme on testproblem II

Δt choosen mean Δt ‖u−uh‖L2

fixed = 0.015625 9.794e-3
adaptive ≈ 0.047014 7.108e-3
fixed = 0.007812 5.764e-3

is far a away from the third order in such a case. If we compare the mean timestep
size we see that with the adaptive scheme we achieved a higher accuracy with less
time steps.

3 Conclusion

A third order algorithm for convection-diffusion problems with a delay was pre-
sented. The presented technique is robust for higher Péclet numbers and a violation
of the C1 assumption. The design of the algorithm leads straightforward to adaptiv-
ity in time with the potentiality to use techniques common from parabolic PDEs.
The adaptivity in time is also one aproach to deal with the memory storage prob-
lem. A future prospect will be to develop different storange strategies for kernels
with different properbilties. A major goal considering the last results is an adap-
tive choice of the order of the BDF scheme in order to improve the handling of
non-differentiable points.
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