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Abstract

This article presents a splitting technique for solving the time dependent incompress-
ible Navier-Stokes equations. Using nested finite element spaces which can be interpreted
as postprocessing step the splitting method is of more than second order accuracy in
time. The integration of adaptive methods in space and time in the splitting are dis-
cussed. In this algorithm a gradient recovery technique is used to compute boundary
conditions for the pressure and to achieve a higher convergence order for the gradient at
different points of the algorithm. Results on the ’Flow around a cylinder’- and the ’Driven
Cavity’-problem are presented.
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1 Introduction

The time dependent incompressible Navier-Stokes equations are given by:

∂v

∂t
+ (v · ∇)v − ν∇2v +∇p = f in Ω, t ∈ [0, t̂] (1)

∇ · v = 0 in Ω, t ∈ [0, t̂] (2)
v = h on ∂Ω, t ∈ [0, t̂] , (3)
v = v0 for t = 0, in Ω . (4)

The solution of these equations on the time interval [0, t̂] are the velocity v of a Newtonian
fluid with the kinematic viscosity ν and the pressure p in a domain Ω. We assume that Ω is
a bounded domain in R2 and that its boundary ∂Ω is polygonal. The boundary conditions
are given by a function h on ∂Ω.

We start by introducing a splitting technique for the Navier-Stokes equations with finite
elements which is related to the one published by Haschke and Heinrichs [11] for spectral
methods. We call this algorithm the base splitting algorithm and introduce it in section 2.
Like many other splitting techniques it seems to be restricted to second order in time. An
overview of several splitting approaches as well as their orders in time, which are estimated
by numerical results or an analytic proof for a given smoothness of the solution, can be found
in [7]. The major reason for the restriction to second order is the fact that - by using the
approach published in [11] - it has not been possible so far to construct a stable pressure
extrapolation of an order higher than one, especially for higher Reynolds numbers.
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To negotiate this problem we choose a hierarchy of finite element spaces in section 5 and
conveniently nest two base splitting steps. The result is a technique of higher order in time
that generally reduces the CPU costs compared to the base splitting with the same number
of unknowns. So this technique can alternatively be seen as a postprocessing or a precondi-
tioning splitting step.

For splitting techniques the boundary conditions for the pressure are always a challenge
with a long history see e.g. [26], [18]. For the boundary conditions of the second-order pres-
sure equation we refer to the discussion in the papers of Karniadakis et al. [16] , Maday et
al. [19] and Timmermanns et al. [20] and [23]. For the computation of the pressure bound-
ary conditions in section 2 we used a variation of the formulation given in [16] by Karniadakis.

To use this technique we have to evaluate the laplacian operator with linear finite ele-
ments which leads to a couple of problems that can be avoided using a gradient recovery
technique. Beyond this such a gradient recovery technique can be used at different points of
the algorithm to increase the accuracy in space, because for linear finite elements the con-
vergence rate of the gradient is only of first order. Some gradient recovery techniques like
the Z2 gradient recovery [27] are less accurate at the edges of Ω where we want to compute
boundary conditions. So in section 3 we develop a new gradient recovery technique for this
splitting with better recovery results at ∂Ω.

To test our splitting scheme on appropriate examples we use two different strategies. One
quite common way to get appropriate examples consists of choosing a velocity/pressure pair
(v; p) and setting the right-hand side and the boundary conditions so that (v; p) fulfills the
Navier-Stokes equations. With this strategy it is easy to compare the finite element solution
with the exact one. We tested the splitting on some examples of this type and present the
results on two of them in this paper. However, a solution (v; p) chosen in this way has in
general no physical meaning. So beyond this we tested the algorithm on some standard CFD
problems in section 6, the ’Flow around a cylinder’- and the ’Driven Cavity’-problem.
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2 The stabilised base splitting

For the approximation of ∂
∂t we use a BDF scheme of third order. The leading coefficient of

the BDF scheme is denoted with β0 and the time step size with 4t. Similar to the splitting
for spectral methods [11] one time step of the splitting follows this scheme:

Time step in the base splitting

1. Compute a guess (p̄m+1) for the pressure

2. Based on the pressure compute an intermediate velocity ṽm+1

3. Solve the Poisson equation

−∇2pupdate = − β0

4t∇ · ṽm+1 (5)

n · ∇pupdate = n · 0 on ∂Ω (6)

for the pressure and velocity update

4. Apply the update by

pm+1 = p̄m+1 + pupdate (7)

vm+1 = ṽm+1 +
4t
β0
∇pupdate (8)

The finite element spaces for the velocity and the pressure are chosen to fulfill the inf-sup-
condition, so we use triangle Taylor-Hood elements with linear and in the context of the
postprocessing also with quadratic base functions.

In [11] p̄m+1 is chosen p̄m+1 := p̄m. This choice has two disadvantages.
The first one concerns the boundary conditions. With this choice the pressure function
is sticked to unnatural homogeneous Neumann boundary conditions. Unfortunately it is
problematic to integrate fitted boundary conditions in the Poisson problem (5), (6) because
a too high accuracy is necessary to compute stable adapted boundary conditions. The reason
for the need for high accuracy is that, particularly for a small time step size, an erasement of
all trusted decimal places is possible if p does not change too much, pm+1 − pm = pupdate ≈
0 on ∂Ω.

The second disadvantage concerns e.g. functions of the type v(x, y, t) = z(t) · w(x, y).
Because of a kind of memory effect for such functions this method is not unconditionally
stable for finite elements. In such cases the structure of v does not change in time. So the
same e.g. mesh based errors that appear when solving the Poisson problem (5), (6) are added
stepwise to the pressure in step 4 of the algorithm.

For small time step sizes the factor β0

4t on the right side of (5) amplifies this effect which
is compensated in (8) but not in (7).
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For the used linear finite elements this leads to an unstable algorithm. To avoid this we
have to look for a way to compute p without a memory effect. To do this we use (1) together
with the fact that v is divergence free. If we apply ∇· to (1) the linear terms ∂v

∂t and ν∇2v
on the left side are eleminated. To evaluate the non-linear term we use the velocity and the
right side f of the last time step. It turned out that a mixed-formulation of vm and fm+1

is unstable in some cases as well as using an extrapolation of a higher order for the velocity.
After all we end up with a Poisson equation for the pressure guess. This technique prevents
the mentioned memory effect and the associated unstablity. The price is another Poisson
equation to solve. This can be done very effectiv because the Galerkin matrix is constant
during the whole simulation. So if the dimension allows the use of a sparse solver like UMF-
PACK [3], which was the case for all problems presented in this paper, the decomposition can
be computed once and used during the whole simulation. If the dimension of the problem is
beyone the scope of a sparse solver a sparse approximate inverse like [5] could be computed
once and being used during the whole simulation.

So in difference to [11] we compute p̄m+1 by the following Poisson equation:

−∇2p̄m+1 = −∇ · fm +∇ · ((vm · ∇)vm) (9)
⇔︸︷︷︸

∇·v=0

−∇2p̄m+1 = −(fm
1x + fm

2y) + vm
1xv

m
1x + 2vm

2xv
m
1y + vm

2yv
m
2y . (10)

All partial derivations on the right side were constructed with the later presented gradient
recovery technique, which for sufficiently smooth v increases the accuracy of the right side
data. To transfer the velocity and pressure data between the finite element spaces we use
restringation or prolongation operators commonly known from multi-grid techniques. The
same technique is used to compute the Neumann boundary conditions for the PDE.

The history of the pressure boundary conditions in splitting techniques was already men-
tioned in the introduction. Approaches used today in other splitting techniques to construct
boundary conditions for the pressure can e.g. be found in [6] and [15].

We take the Neumann boundary conditions directly from the Navier-Stokes equations (1)
as well:

n · ∇p̄m+1 = n · (f − (
∂vm

∂t
+ (vm · ∇)vm

︸ ︷︷ ︸
(∗)

−ν∇2vm)) on ∂Ω . (11)

The term (∗) is zero for homogeneous zero Dirichlet boundary conditions in v. In the case
other boundary conditions are given ∂v

∂t is approximated with a BDF scheme of third order
or taken from the given boundary conditions because we are only interested in ∂

∂tv
m on ∂Ω.

In the equation (11) we rewrite the Laplace term using the fact that ∇ · v = 0

∇2v1 = v1yy − v2yx , ∇2v2 = v2xx − v1xy .

For an approximation of the Laplace operator this formulation is more accurate than vixx+viyy

(i = 1, 2). Later in section 3 we will comment further on this.

With the coefficients of the BDF scheme βj(j = 1..3) we set

f̃ = f −∇p̄n+1 − 1
4t

3∑

j=1

βjv
m+1−j
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and so the intermediate velocity can be computed explicitly
(
−ν∇2 +

β0

4tI
)
ṽm+1
i = f̃n+1 − (ve · ∇)ve (12)

or implicitly
(
−ν∇2 +

β0

4tI
)
ṽm+1
i + (ve · ∇) ṽm+1

i = f̃n+1 (13)

using a kind of Picard iteration, similar to the technique in [11].
The initial value for this iteration is ve = vm and after every iteration we set ve = ṽm+1

i .
This continues until the stop criterion ‖ṽm+1

i −ṽm+1
i−1 ‖ < ε is fulfilled. The boundary conditions

for (12) , (13) are taken from (3).

3 The Taylor based gradient recovery technique

This section focuses on the gradient recovery technique mentioned in the abstract of this
paper. It is a technique specially developed for this problem but the use is not limited to the
presented splitting technique. Like the Z2 gradient recovery [27] it can also be used as an
error indicator or generel method for a postprocessing gradient recovery.

Let Th be a triangulation of Ω and T ∈ Th. Thus the linear finite element space is
Vh = {uh ∈ C(Ω̄) ;uh|T ∈ P1 for T ∈ Th}. To motivate this gradient recovery technique we
assume that u ∈ C2(Ω) and Ihu = uh ∈ Vh with Ih as interpolation operator on Vh. To
recover the gradient of u at a node a of Th we use a second order Taylor approximation with
the values of uh at a and n ≥ 5 nodes (xj , yj) in the neighbourhood of a:

uh(xj , yj)− uh(xa, ya) = ux(xa,ya)(xj − xa) + uy(xa,ya)(yj − ya) (14)

+
1
2
(uxx(xa,ya)(xj − xa)2 + uxy(xa,ya)(xj − xa)(yj − ya) + uyy(xa,ya)(yj − ya)2) (15)

The bold marked terms are the unknowns that are to be computed by solving a 5× n-least
squares problem. Generally all neighbours of a and also their neighbours are chosen. Figure
2 shows an example for such a neighbourhood of a. The new Taylor-based recovery technique
(TBR) uses the data from all displayed nodes while a technique like the Z2 recovery [27] only
uses the information from the nodes with filled circles. The greater database together with a
proper weighting improves the results, especially on adaptive refined meshes and at the edges
of Ω.

The weighting is done as follows: We differ the nodes if they are located above U1 :=
{xj , yj |yj > ya}, below U2 := {xj , yj |yj < ya}, right U3 := {xj , yj |xj > xa} or left U4 :=
{xj , yj |xj < xa} from a. It is clear that for Û the set of all nodes

Û =
4⋃

i=1

Ui ,

with U1
⋂
U2 = ∅ and U3

⋂
U4 = ∅. Furthermore we define :

h1j = xj − xa h2j = yj − ya dj =
1√

h2
1j + h2

2j

, (j = 1...m)
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Figure 1: Mesh with 3233 un-
knowns
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Figure 2: Database of GT /TBR
and the Z2 gradient recovery
technique
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Figure 3: Error TBR and Z2
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g1j =
h1j

dj
g2j =

h2j

dj
αi =

{
1 , if (xj , yj) ∈ Ui

0 , if (xj , yj) 6∈ Ui

G1 =
∑

(xj ,yj)∈U1

|g1j | G2 =
∑

(xj ,yj)∈U2

|g1j | G3 =
∑

(xj ,yj)∈U3

|g2j | G4 =
∑

(xj ,yj)∈U4

|g2j | .

To give a higher weight in the least squares problem on nodes near a we scale each equation
with 1

dj
. So finally we get the following weighting factor for an equation j in the least squares

problem

wj =
4∑

i=1

αi
|h1j |+ |h2j |

djGi
, (j = 1...m) .

Figure 3 shows the results of the two techniques recovering the partial derivation uhx on a
mesh like the one in figure 1. The data for the gradient recovery derives from a function

uh ≈ sin(π(x− 1)/2) sin(π(y − 1)/2)

which is the solution of a Poisson equation

−∇2u = f, (16)
u = 0 on ∂Ω , (17)

with Ω = [0, 1] × [0, 1]. Figure 3 illustrates the fact that the TBR technique shows higher
reduction rates in the L2 norm. This technique can be used for any set of points and is not
limited by its construction to linear base functions.
Very important for the computation of the needed boundary conditions for the pressure is
the error in the nodal maximum norm because the maximum error often occurs at the edges
of Ω. As figure 3 shows the TBR is clearly more accurated than the Z2.

If this technique is used for all nodes of a triangulation we will use this according to the
approximated nabla operator by GTuh. The reconstruction of second order derivations at the
edges still causes more problems than the recovery of the first order derivations.

It is well known that splitting techniques generally are designed for problems with a small
viscosity, see e.g. [24] page 21f. For all practical problems in fluid dynamics this is not
a drawback, because the kinematic viscosity is very small, e.g. 6.8 · 10−4 for glycerin and
1 · 10−6 for water with 20 centigrade.

Additionally to this generall property of splitting techniques the computation of the
boundary values focus the case of small kinematic viscosity. A theoretical problem with
a hugh kinematic viscosity may cause problems concering the boundary values. In this case
it may be better to choose homogeneous Neumann boundary conditions for the pressure.

But generally - compared with the other terms - the very small kinematic viscosity ν
heavily reduces the influence of second order derivations at the edges.

Nevertheless, the focus on a small kinematic viscosity is not a drawback.
Because of the general design of splitting techniques for problems with a small viscosity

- we consider cases with 10−6 ≤ ν ≤ 1 - this is not an additional constraint. This special
recovery of the boundary conditions may only amplify this effect for a huge kinematic viscosity.

Concerning the presented recovery technique itself we can sum up that as an error indicator
the Z2 might be a better choice because the CPU costs are lower. For a postprocessing
gradient recovery the presented technique is more attractive because it achieves a higher
accuracy.
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4 Numerical Results for the base splitting

We implement the splitting scheme using Taylor-Hood elements with linear base functions.
To measurerror of reduction rate in time the error based on the discretisation in space has

to be sufficiently small or it will tend to dominate the measured error. After the Splitting
the equations are related to parabolic problems, for which this is a common fact, see e.g.
[25]. This effect is amplified for the implicit treatment (13), because in this case we deal with
convection dominated equations that tend to be less accurate compared to diffusion dominated
equations. For details and error estimations for streamlinediffusion stabilised finite elements
(SDFEM) see e.g. [21] p.231-233 or [17] p.325-329.

To avoid this it is possible to use two strategies. On the one hand we could perform the
test for all ∆t on a constant, fine grid. In this case one would observe that the measuring
error for ∆t → 0 converges against the error in space. On the other hand we could start
with a quite coarse grid and refine it if the reduction rate is too much affected by the error
in space.

We used the second approach because this also avoids conflicts with the CFL condtion
which can be important for the explicit picard iteration described at the end of section 2.

Nevertheless, it can be practicaly impossible to perform another global refiment because
of the quadratic grow of the number of unknows. In particular if the order in time is higher
than the order in space, as we will see in section 5, one bisection of ∆t would require more
than one global regulare refinement in space.
If a high accuracy in space is needed one should think of a local a priori refinement, like it
was performed for the ’Flow around a cylinder’- and the ’Driven Cavity’-problem in section
6. An adapitve refinement in space during the simulation is generally not suggested because
it requires the addition of divergence free node to past values of v. If the divergence-freedom
guarantee can not be guaranteed this may perturb the splitting.

Beside the ’Flow around a cylinder’- and the ’Driven Cavity’-problem we only use global
regular refinements.

The first test problem (I) over the unit square Ω = [0, 1]× [0, 1] is the same one as in [11]
with the right side and the boundary conditions so chosen that the solution is

v1(x, y, t) = cos(5t)(sin(πx/2) cos(πy/2)) ,
v2(x, y, t) = − cos(5t)(sin(πy/2) cos(πx/2)) ,

p(x, y, t) =
cos2(5t)

4
(cos(πx) + cos(πy)) + 10 cos(5t)(x+ y − 1) .

The second test problem (II) is computed over Ω = {(x, y) ∈ R2|1 ≤ r ≤ 2} with r =√
x2 + y2. Again we choose the right side and the boundary conditions such that the solution

is

v1(x, y, t) = −y(0.25− (r − 1.5)2) sin(2πt) ,
v2(x, y, t) = x(0.25− (r − 1.5)2) sin(2πt) ,
p(x, y, t) = y sin(x) sin(2πt).

The results e.g. from figure 4 and 5, the results presented later in table 1 and other data
on different problems, see [8], verify that the base splitting is of second order in time for the
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Figure 4: L2-Error in v1 on the test problem
I with ν = 1/1000
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Figure 5: L2-Error in v1 on the test problem
II with ν = 1/5000

velocity and the pressure.

The figures 4 and 5 show the expected behaviour. The development of the error is similar
to common parabolic equations discretised by finite elements, which is a priori estimated for
the implicit Euler or BDF(1) by:

‖u(tn)−un‖0 ≤ ‖u0
h−Ru(t0)‖+‖(I−Rh)u(tn)‖+

∫ tn

0
‖(I−Rh)

du

dt
‖0 ds+∆t

∫ tn

0
‖d

2u

dt2
‖0 ds

In this estimation R is the elliptic projection, see e.g. [17] p.260ff or [25] for details. Test
problem I is of the kind that the last terms are only of a minor importance compared to test
problem II.

As one can see in the figures 8 and 9 the explicit strategy works for Reynolds numbers
Re less than 2000. The implicit strategy has been tested up to a Reynolds number of 10000
with streamlinediffusion stabilised finite elements, see e.g. figures 6 and 7.
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Figure 7: Absolute L2-Error of p on the test
problem I (implicit)
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problem I (explicit)
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5 The multi-grid postprocessing

As the splitting with spectral methods [11] the base splitting is of second order in time. Now
with a kind of postprocessing step there is a stable way to compute an approximation p̄m+1

at pm+1 of an order higher than one that can be used to compute ṽ.

5.1 The full implicit approach

0. Compute an initial pressure p0
h for t = 0 with (10)

Time step with built-in postprocessing
(version with linear base functions and a full implicit treatment of the nonlinear term)

1. Solve the PDE (13) for the intermediate velocity ṽn+1
h/2 using pn

h

2. Solve the Poisson equation (5), (6) in Vh for the pressure and velocity update

3. Apply the update to the velocity vn+1
h/2 = ṽn+1

h/2 + 4t
β0
∇pupdate

4. Solve the PDE (10) and use v̂n+1
h/2 on the right side to get p̄n+1

h/2

5. Solve the PDE (13) for the intermediate velocity ṽn+1
h/4 with the initial value

ve = P v̂n+1
h/2 and p̄n+1

h/2 from step 4

6. Solve the Poisson equation (5), (6) in Vh/2 for the pressure and velocity update:

−∇2ph/2update
= − β0

4t∇ · ṽn+1
h/4 ; ph/2update

= 0 on ∂Ω

7. Apply the update to the velocity and the pressure

pn+1
h/2 = p̄n+1

h/2 + ph/2update

vn+1
h/4 = ṽn+1

h/4 +
4t
β0
∇ph/2update

8. Compute the restrictions for the next splitting step:

vn+1
h/2 = Ih/2 v

n+1
h/4 , pn+1

h = Ih p
n+1
h/2

There we use a set of nested finite element spaces. Let Vh/2 be a finite element space that was
built by a global regular refinement of the mesh of Vh. VH is such a finite element space that
Vh together with VH satisfy the inf-sup-condition, e.g. quadratic base function of the same
mesh or again a global refinement of Vh. Denote now Xh = Vh/2 × Vh/2 and XH = VH × VH .
Set Vh,0 and Vh/2,0 as the subspace with the elements that satisfy

∫
Ω u dx = 0.
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First we compute (vn+1
h/2 , p

n+1
h ) in WH = Xh × Vh,0 and use the results to perform a split-

ting step in WH = XH × Vh/2,0. With this technique the number of Picard iterations in
WH can generally be reduced and the intermediate velocity can be computed with a pressure
approximation of a higher order than in the base splitting. The following algorithm is an ex-
ample with linear base functions, so we set H = h/4, and with a full implicit treatment of the
nonlinear term, in the sense of implicit in both substeps. Again the prolongation between the
finite element spaces is done with the common prolongation and restriction from multi-grid
solvers. Only in step 8 the interpolation operator is used.

In our approach the finite element spaces Vh,0 ⊂ Vh ⊂ Vh/2 ⊂ Vh/4 are nested in every part
of the algorithm and the inf-sup-condition is fulfilled. Another advantage of this procedure is
that many tasks concerning adaptivity, especially adaptivity in time, can be answered in the
coarser finite element spaces. This helps economising CPU costs.

5.2 The semi-implicit approach

A cheaper but less robust variation of this algorithm uses quadratic Taylor-Hood-Elements
with an explicit treatment of the nonlinear term in the postprocessing substep. This leads
to a positive definite and symmetric Galerkin matrix for which very effective techniques like
PCG and Multigrid-techniques can be used. For a constant time step size this matrix will also
be constant during the whole simulation which offers again the opportunity to use techniques
like the UMFPACK decomposition. The stabilty will be further discussed in section 6.1.

Time step with built-in postprocessing
(version with linear/quadratic base functions

and implicit/explicit treatment of the nonlinear term)

5. Solve the PDE (12) for the intermediate velocity ṽn+1
H with the initial value

ve = PH v̂
n+1
h/2 and p̄n+1

h/2 from step 4

6. Solve the Poisson equation (5), (6) in Vh/2 for the pressure and velocity update:

−∇2ph/2update
= − β0

4t∇ · ṽn+1
H ; ph/2update

= 0 on ∂Ω

8. Compute the restrictions for the next splitting step:

vn+1
h/2 = Ih/2 v

n+1
H , pn+1

h = Ih p
n+1
h/2

Other variations based on this idea are a predictor-corrector technique with an explicit base
splitting and an implicit postprocessing or a full implicit aproach.
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5.3 Motivation for the multi-grid postprocessing

To motivate this technique we will start discussing how time dependent errors affect a gradient
recovery technique. To do this let vh ∈ Vh be the finite element approximation on the function
v ∈ V with

‖Ihv − vh‖ ≤ O(hs) +O(4tk) .
Now, if the gradient of vh is constructed high frequent time dependent errors are propagated
depending on the meshsize h and the used recovery technique. Using the Lipschitz continuity
of a gradient recovery technique G in the finite dimensional vector space it can be shown that

‖GIhv −Gvh)‖ ≤ C1O(hl) + C2O(hs−m) + C3O(4tk) ·O(h−m) (18)

with the order l of the built gradient and the order m with which the gradient recovery
technique G propagates the error. In all numerical tests the second term is of no importance
so that C2 seems to be zero or at least very small. E.g. in the case of linear finite elements s
is 2. If we simply use the gradient instead of a recovery technique we receive l = m = 1.

For most gradient recovery techniques l > 1 but also m > 1. For the presented gradient
recovery technique l ≈ 2 and m ≈ 2. So of course, especially if gradient recovery techniques
of high order are used, h should be chosen regarding the time step size 4t. Using combined
adaptivity in time and space it is of great importance first to reduce the time dependent error
and then to check for an adaptive mesh refinement. Because this is the standard process
using adaptive techniques it is not a strong limitation.

Let the Navier-Stokes equations be given with homogeneous Dirichlet boundary conditions.
Beyond this let us assume that the Neumann boundary conditions for the pressure are known,
so that they can be exactly fulfilled, e.g.

n · ∇pn+1 = n · ∇p̄n+1 = 0 on ∂Ω . (19)

For simplicity we set E = C1O(hl) +C2O(h2−m) +C3O(4t2) ·O(h−m). Let now pn+1 be the
exact pressure at tn+1. So pn+1 fulfills the following equation:

−∇2pn+1 = −(fn+1
1x + fn+1

2y ) + vn+1
1x vn+1

1x + 2vn+1
2x vn+1

1y + vn+1
2y vn+1

2y︸ ︷︷ ︸
g1

, (20)

n · ∇pn+1 = 0 on ∂Ω , (21)

while p̄n+1
h is computed to fulfill the equation

−∇2p̄n+1
h = −(fn+1

1x + fn+1
2y ) + vn+1

H1xv
n+1
H1x + 2vn+1

H2xv
n+1
H1y + vn+1

H2yv
n+1
H2y︸ ︷︷ ︸

g2

, (22)

n · p̄n+1 = 0 on ∂Ω . (23)

To achieve a conclusion about the approximation quality of p̄n+1
h we compare the right sides

of (20) and (22). The derivations on the right side in (22) can be built with a kind of gradient
recovery technique to achieve a higher order with the effects discussed above. If we assume
that the domain Ω is such that this Poisson equation is H2-regular we gain

‖pn+1 − pn+1
H ‖0 ≤ ‖pn+1 − pn+1

H ‖2 ≤ c‖g1 − g2‖0 (24)
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So we need an estimate for ‖g1 − g2‖0 :

‖g1 − g2‖0 = ‖(vn+1
1x vn+1

1x − vn+1
H1xv

n+1
H1x) + (vn+1

2y vn+1
2y − vn+1

H2yv
n+1
H2y)

+ 2(vn+1
2x vn+1

1y − vn+1
H2xv

n+1
H1y)‖0

≤ ‖vn+1
1x vn+1

1x − vn+1
H1xv

n+1
H1x‖0︸ ︷︷ ︸

I.

+ ‖vn+1
2y vn+1

2y − vn+1
H2yv

n+1
H2y‖0︸ ︷︷ ︸

II.

+ 2‖vn+1
2x vn+1

1y − vn+1
H2xv

n+1
H1y‖0︸ ︷︷ ︸

III.

With the reverse triangle inequality and (18) we achieve:

‖vn+1
H1x‖0 − ‖vn+1

1x ‖0 ≤ ‖vn+1
1x − vn+1

H1x‖0 ≤ E ⇔ ‖vn+1
H1x‖0 ≤ ‖vn+1

1x ‖0 + E (25)

We start with the estimation for I.:

‖vn+1
1x vn+1

1x − vn+1
H1xv

n+1
H1x‖0 = ‖(vn+1

1x − vn+1
H1x)(vn+1

1x + vn+1
H1x)‖0

≤ ‖vn+1
1x − vn+1

H1x‖0‖vn+1
1x + vn+1

H1x‖0

≤︸︷︷︸
(18)

E · ‖vn+1
1x + vn+1

H1x‖0 ≤︸︷︷︸
(25)

E · (2‖vn+1
1x ‖0︸ ︷︷ ︸

=C1V

+E) ≤ E(C1V + E)

The estimation for II. can be done analogous with ‖vn+1
H2y‖0 ≤ ‖vn+1

2y ‖0 + E and C2V =
2‖vn+1

2y ‖0. Thus with C3V = max{‖vn+1
1y ‖0, 2‖vn+1

2x ‖0} it follows:

‖vn+1
2x vn+1

1y − vn+1
H2xv

n+1
H1y‖0 = ‖vn+1

2x vn+1
1y − vn+1

H2xv
n+1
1y + vn+1

H2xv
n+1
1y − vn+1

H2xv
n+1
H1y‖0

≤ ‖vn+1
2x vn+1

1y − vn+1
H2xv

n+1
1y ‖0 + ‖vn+1

H2xv
n+1
1y − vn+1

H2xv
n+1
H1y‖0

≤ ‖vn+1
1y ‖0‖vn+1

2x − vn+1
H2x‖0 + ‖vn+1

H2x‖0︸ ︷︷ ︸
≤2‖vn+1

2x ‖0+E

‖vn+1
1y − vn+1

H1y‖0

≤ ‖vn+1
1y ‖0E + ‖vn+1

2x ‖0E + E2 = E(C3V + E)

With a constant CV = 3 max{C1V , C2V , C3V } that only depends on the first order derivations
of the exact solution v we get under the above conditions

‖∇2(pn+1 − pn+1
H )‖0 ≤ E(C1V + C2V + C3V + 3E) = E(CV + 3E) (26)

Summarizing we derive that for a constant mesh the time dependent error will be reduced of
second order. The following numerical results substantiate that with this pressure approxi-
mation it is possible to achieve reduction rates of higher order in time.
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6 Numerical results for the splitting with built-in postprocess-
ing

Again we test the splitting on the test problems I and II to display the benefits of the
postprocessing technique. Because the semi-implicit and the full implicit approach differ
much in their scope and behaviour they will be discussed in different subsections.
The Picard iterations per time step (PIPS) given in the different tables are the average of
the sums of the Picard iterations in the base splitting and the postprocessing step over the
simulation time. over the simulation time

6.1 Results for the full implicit approach

At first glance the algorithm of the splitting with built-in postprocessing seems to be more
expensive than the one without. But as table 1 shows the splitting technique with post-
processing is with the same number of unknowns in all numerical tests faster than the one
without. The reason is the lower number of Picard iterations per time step (PIPS) in WH .
Beyond this the accuracy is highly increased, e.g. as we can see from table 1 for 4t = 1/32

Degrees of with Postprocessing without Postprocessing Speed-
∆t freedom ‖u− uh‖L2 Quot. ‖u− uh‖L2 Quot. up

velocity (v1)
1/8 29408 1.216e-01 - 1.222e-01 - 1.34
1/16 29408 1.768e-02 6.880 4.035e-02 3.029 1.12
1/32 116672 2.254e-03 7.843 6.779e-03 5.952 1.07
1/64 116672 3.026e-04 7.448 2.247e-03 3.018 1.35
1/64 464768 2.811e-04 8.018 - - -

pressure (p)
1/8 7472 1.907e-02 - 5.087e-01 - 1.34
1/16 7472 2.827e-03 6.746 1.145e-01 4.443 1.12
1/32 29408 4.260e-04 6.636 2.735e-02 4.187 1.07
1/64 29408 3.348e-04 1.273 8.960e-03 3.052 1.35
1/64 116672 1.008e-04 4.226 - - -

Table 1: Splitting with and without postprocessing by comparison; test problem II ; ν =
1/5000

the resulting velocity error is more than thrice higher than with the base splitting, for the
pressure it is about a factor 64.

In table 1 we also observe the effect described in section 4. The measuring L2-error for
∆t → 0 converges against the error in space. For the ∆t = 1/64 we can see that with a
number of unknowns comparable to the base splitting a further reduction in p is impossible.
Because of the coarser mesh for the pressure, p is the first value influenced by this effect. With
another refinement it is possible to achieve a reduction rate beyond second order in p again.
To achieve proper reduction rates for ∆t = 1/128 two more global refinements were needed
and because of this it is left out. For a higher accuracy elements with a higher order in space
need to be used. For the test problem I in table 2 and 3 we observe the same behaviour. So

15



Degrees of v1 v2
∆t freedom (DoF) PIPS ‖u− uh‖0 Quotient ‖u− uh‖0 Quotient
1/8 16641 12.7 6.284e-02 - 7.320e-02 -
1/16 66049 6.6 5.516e-03 10.139 6.930e-03 10.056
1/32 66049 4.9 6.066e-04 9.093 6.554e-04 10.057
1/64 263169 4.3 1.107e-04 5.480 1.215e-04 5.392
1/128 263169 4.0 2.413e-05 4.588 2.415e-05 5.033

Table 2: Test problem I; The L2 error in v for Re = 2000 and a full implicit splitting with
postprocessing with different 4t-h-combinations

∆t DoF PIPS ‖u− uh‖0 Quotient
1/8 4225 12.7 2.206e-01 -
1/16 16641 6.6 2.362e-02 9.341
1/32 16641 4.9 6.951e-03 3.398
1/64 66049 4.3 1.835e-03 3.787
1/128 66049 4.0 4.774e-04 3.845

Table 3: Test problem I; The L2 error in p for Re = 2000 and a full implicit splitting with
postprocessing with different 4t-h-combinations

on test problem I and II for a sufficiently small error in space we can observe reduction rates
beyond the second order.

6.2 Results for the semi-implicit approach

Because of the explicit treatment of the nonlinear term this technique is less stable than the
full implicite approach. In the numerical tests it turns out that it is limited to a Reynolds
number less than 2000.

Beyond this as table 4 shows the approach has to consider a kind of CFL condition. On a
grid that is too fine for a given time step size the method diverges. It as well underlines the
in chapter 4 discussed problems to messure the convergence rate. If we compare the results
on for ∆t = 1/32 on the mesh 7472/29408 with the results on 29408/116672 and ∆t = 1/64
we can see a reduction of a factor about 7.9. The comparison on the same grid whould be
missleading.

∆t DoF ‖u− uh‖L2 DoF ‖u− uh‖L2

1/32 7472/29408 4.071e-03 29408/116672 div.
1/64 7472/29408 9.901e-04 29408/116672 5.148e-04

Table 4: CFL condition; L2-Error in v1 ; test problem 2; ν = 1/5000 ⇔ Re ≈ 1925

In table 5 the results on test problem II are displayed. On the one hand with the semi-
implicit approach it is possible to compute very good results with an explicit and cheap
technique. For a lower Reynolds Number than in table 4 we can expect a stable behaviour of

16



the semi-implicit approach as we can see in table 5. The results are computed with a constant
mesh showing no CFL effects only the expected convergence against the error in space.

DoF in the
∆t base/postprocessing-step PIPS ‖u− uh‖L2 Quotient

v1
1/8 7472/29408 5.7 2.057e-01 -
1/16 7472/29408 4.2 2.960e-02 6.949
1/32 7472/29408 4.0 3.955e-03 7.486
1/64 7472/29408 4.0 7.723e-04 5.121

p

1/8 1928/7472 5.7 3.110e-02 -
1/16 1928/7472 4.2 4.923e-02 6.317
1/32 1928/7472 4.0 1.468e-03 3.353
1/64 1928/7472 4.0 1.403e-03 1.017

Table 5: Convergence against the error in space for the implicit/explicit splitting on test
problem II with Re = 770.0 ν = 1/2000; all partial derivations on the right side, including
the non-linear term, were constructed with the gradient recovery technique

Even with if handicaps compared to the very robust full implicite aproach the semi-
implicite aproach is intessting for problems with low Reynolds numbers, because the low
CPU costs. For the quite smooth artificial test problems the upper boundary was a Reynolds
number of 2000. On the Standard CFD Problems in section 6.3 it was able to solve the
’Driven Cavity’-problem up to a Reynolds numbers of 1000. It was impossible to achieve
proper results on the ’Flow around a cylinder’-problem.

6.3 Standard CFD Problems

To test the splitting on some standard CFD problems we use the ’Flow around a cylinder’-
and the ’Driven Cavity’-problem.

6.3.1 ’Driven Cavity’

The goal in this very common benchmark problem is to compute the flow of a 2D driven
cavity at various Reynolds numbers. The domain itself is the unit square. As one can see
from figure 10 the cavity is driven by a translating plate at the top of the cavity given by
v̄1. Choosing v̄1 = −1 we obtain the (unregularized) Driven Cavity Problem. The boundary
conditions of the Driven Cavity Problem induce singularities at the top corners of the unit
square, so the mesh in this region was a priori refined as displyed in figure 11. Depending
on the Reynolds number the Driven Cavity Problem converged against a stationary solution,
which properties are used as benchmark values. At this benchmark problem we also tested
the variation of the splitting algorithm which uses an explicit treatment of the nonlinear term
with quadratic Taylor-Hood-Elements. The explicit treatment leads to a symmetric, positive
definite problem which is much easier to be solved. On the other hand it is less robust than
the full implicit one and so it is restricted to a Reynolds number less than 2000 for the Driven
Cavity Problem. Table 6 shows the result achieved with this technique on an adaptive refined
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Figure 10: The Driven Cavity Problem
Figure 11: Mesh for the Driven Cavity
Problem

max |ψ| (Streamfunction)
Botella & R. Peyret (1998) adaptive mesh refinement; half implicit

x-coordinate 0.4692 0.46875
y-coordinate 0.5652 0.5625

max |ψ| 0.1189366 0.122

Table 6: Results of the implicit splitting with explicit postprocessing using quadratic Taylor-
Hood-Elements to solve the Driven Cavity Problem with Re = 1000
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mesh started with 58153 Degrees of Freedom for v and 14725 for p at the postprocessing mesh.
The final mesh has 323248 Degrees of Freedom for v and 81187 for p. As error indicator it is
possible to use the described gradient recovery technique similar to the Z2 technique described
in [27]. A mesh refinement in combination with a splitting scheme that uses the fact that
∇ · v = 0 possibly has disadvantages. The reason is that added unknowns need interpolated
data for the former time steps. This interpolated data may disturb the divergence-freedom of
v which in the step 6 of the algorithm influences mainly the pressure for a small time step size
because of the factor 1/4t. This is a well-known phenomenon for splitting techniques, see
e.g. [24], p.21ff. The velocity is not affected because the intermediate velocity is computed
using the pressure constructed in step 1 in which no factor amplifies this effect. So for the
Driven Cavity this is not of real importance because mainly we are interested in the velocity.

One benchmark value for the Driven Cavity Problem is the maximum of the Streamfunc-
tion ψ which is defined by

−∇2ψ =
∂v2
∂x

− ∂v1
∂y

in Ω

ψ = 0 on ∂Ω .

In table 6 it is compared with the value computed by Botella & R. Peyret using spectral
methods on a problem with substrated singularities so that only the smooth part of the
solution has to be computed. The result of this procedure is a very accurate solution.
To compute the stationary solution for higher Reynolds numbers we used the full implicit

splitting with postprocessing on a constant mesh. The values of the velocity along x = 0.5
and y = 0.5 are displayed in figure 12 and are similar to the ones published in [10].

6.3.2 ’Flow around a cylinder’

A very popular benchmark problem is the ’Flow around a cylinder’ defined by Schäfer and
Turek within the DFG high priority program flow simulation with high-performance computers
in [22]. Three variations of this problem exist, the geometry is displayed in figure 13. We
will present results on two of them. In [22] the inflow at Γ2 is given in the definition. For the
outflow Γ3 we used like John in [14] the same boundary conditions as for the inflow. At the
other boundaries no-slip conditions are given. The kinematic viscosity ν is 1/1000 and the
diameter of S is 0.1m. Since the problem is two-dimensional, it is well known that a weak
solution (v; p) exists and this solution is unique.

The benchmark values are the drag and the lift coefficient and the difference of the pressure
at two points at the edge of the obstacle. So for all of them we need a high accuracy at ∂Ω in
v and p which underlines again the importance of the introduced fitted boundary conditions
for the pressure in section 2.

The most difficult benchmark value for all algorithms in [22] is the lift coefficient. It takes
small time steps and a lot of unknowns to get proper results. The drag coefficient and the
pressure are easier to compute. To compute the drag (cd) and the lift (cl) coefficient we used
an approximation first published for the stationary Navier-Stokes equations in [13]. Applying
it to the unsteady Navier-Stokes equations leads to the following equations:

cd = −20
∫

Ω

∂

∂t
v · ud + ν∇v : ∇ud + (v · ∇)v · ud − p(∇ · ud) dΩ (27)
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Figure 12: Results of the full implicit splitting with postprocessing for Driven Cavity Prob-
lem with Re = 5000 and 58153 (pre)/ 231121 (post) degrees of freedom in v ; the velocity
components v1, v2 along x = 0.5 and y = 0.5

Figure 13: The geometry of the ’Flow around a cylinder’ with the norm of the velocity after
4 seconds in the 2D-3 case

Figure 14: The mesh for the ’Flow around a cylinder’, a priori refined around the obstacle
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Table 7: ’Flow around a cylinder’ with postprocessing
4t t(cd,max) cd. max t(cl,max) cl,max pdiff(8s)

1/400 3.93 2.9509076 5.695 0.49461359 -0.11086049
1/1000 3.934 2.9478232 5.688 0.49117886 -0.11053843
1/1200 3.93 2.9465880 5.686667 0.49084030 -0.11048193
John:04 3.93625 2.9509216 5.6925 0.47811979 -0.11158097

3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5
2,5
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2,9

1/1000
John:04

Figure 15: 2D-3 : cd
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John:04

Figure 16: 2D-3 : cl

cl = −20
∫

Ω

∂

∂t
v · ul + ν∇v : ∇ul + (v · ∇)v · ul − p(∇ · ul) dΩ . (28)

Alternative ways to compute cd and cl can e.g. be found in [24].

6.3.3 Type 2D-3 (unsteady)

For the 2D-3 variation the velocity is simulated over 8 seconds. For the in- and outflow we
obtained:

v(2.2, y, t) = v(0, y, t) = 0.41−2 sin(πt/8)(1.2y(0.41− y), 0) , 0 ≤ y ≤ 0.41 (29)

So after a while the inflow increases and two vortices start to develop behind the cylinder.
Figure 13 shows this at t = 4. For t ∈ [4, 5] the vortices separate from the cylinder and
a vortex street develops. The vortices are still visible at t = 8. Figures 15 and 16 show
the results with 139344 unknowns for the velocity and 35048 for the pressure compared
to the results computed by John in [14] with quadratic Taylor-Hood-Elements and 399616
unknowns in v and 50240 in p. John used a fractional-step-θ-scheme with a macro step size
of 1/800, which means a substep size of 1/2400, see [24], p.162 for details. The intervals for
the benchmark values defined in [22] are pdiff(8s) ∈ [−0.115,−0.105] crefd,max = [2.93, 2.97] and

crefl,max = [0.47, 0.49]. Table 7 shows the good results which could be computed with a quite
low number of unknowns and a time step size up to 4t = 1/1200.
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Figure 17: 2D-2 : 4t chosen with two different parameters εTtol and a secure restriction
0.001 < 4t < 0.005

6.3.4 Type 2D-2 (periodic, unsteady)

For the type 2D-2 we use the splitting algorithm with the presented full implicit postprocessing
and 555680 unknowns in v and 139344 in p. The variation 2D-2 from [22] usually needs small
time step sizes over the whole simulation. It has as inflow condition

v(0, y, t) = 0.41−2(6y(0.41− y), 0) , 0 ≤ y ≤ 0.41 (30)

and we choose again v(2.2, y, t) = v(0, y, t). Not depending on the start configuration (v; p)
at t = 0 these conditions create a periodic behaviour of the solution. Beyond the drag and
the lift coefficient we are now interested in the Strouhal number given by

St =
fd

V̄
.

While f is the frequency of vortex shedding, d is the characteristic length and V̄ is in this
case V̄ := 2/3 · v(0, 0.41/2, t). Hence we derive with the period P = 1/f

St = 0.1 · f =
1

10P .

εTtol 4̄t cd. max cl,max Strouhal
1.0 · 10−3 0.004246 3.2439 1.0104 0.29811
7.5 · 10−4 0.002479 3.2285 1.0031 0.30022

Table 8: 2D-2: Results for an adaptive chosen time step size

The error indicator

et(tm) ≈
4‖v4tm

2
(tm)− v4tm(tm)‖

3‖v4tm
2

(tm)‖ 4tm+1 =
√

εTtol

et(tm)
4tm
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is based on the approximation in the coarser space vh/2 to minimize the CPU costs. We
computed vh/2 with a time step size 4t and 4t/2 was used to choose a proper time step
size in consideration of the stability of the BDF scheme, see e.g. [4]. The results on this
benchmark problem displayed in table 8 are computed with the choice of time step sizes
shown in figure 17 which leads to an average time step size 4̄t shown in table 8. εTtol is
a parameter for the time error tolerance for the choice of the time step size. The tolerance
intervals for cd are [3.2200,3.2400], for cl [0.9900,1.0100] and for the Strouhal number [0.2950,
0.3050].

7 Conclusions

The presented algorithm with built-in postprocessing shows an error reduction in the L2 norm
of an order greater than two in time. It was successfully tested on analytic problems as well as
on standard CFD problems. A very interesting aspect of the postprocessing with nested grids
is that in all numerical experiments it caused no additional CPU costs compared to the base
splitting. The algorithm can be supplemented with adaptive control methods. The control of
the time step size can be implemented in the first substep of the splitting with postprocessing
to reduce CPU costs. An extension of the techniques to three-dimensional problems could
be done straightforward, because neither the in chapter 4 presented base splitting nor the
postprocessing technique makes any use of the number of dimensions. The gradient recovery
technique is as well not especially designed for the two dimensional case. The definition of
the neighbourhood of a has to be extended to transfer this method to a higher dimensional
case. Nevertheless, it is possible that the bigger neighbourhood in three dimensions will make
the gradient recovery technique less attractive so that a fallback to Z2-like techniques has to
be performed. A port of this technique to three dimensions is one of the future prospects.
Beyond this further future prospects could be e.g. the integration of more levels together with
the fourth order BDF scheme for the postprocessing and the use of higher order finite elements.

Acknowledgment: We would like to thank Volker John for providing his benchmark
data for the ’Flow around a cylinder’ 2D-3 case.
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