
Evaluation and Adaptation of Techniques for Higher

Index DAE with Respect to Real-Time Simulation

Jörg Frochte
joerg.frochte@hs-bochum.de

Hochschule Bochum, FB Elektrotechnik und Informatik

Höseler Platz 2, 42579 Heiligenhaus

Abstract

In this paper we will evaluate approaches to the simulation of DAE of higher
order under real-time conditions. Some of these approaches are new variants
of well-known methods. For the purpose of evaluation we used, for example,
explicit multistep methods with and without subsequent inexact projection, and
BDF approaches under real-time termination conditions. The Hardware in the
loop (HIL) Simulation requires plant models which can be simulated under hard
real-time conditions. Thus the combination of DAE and real-time simulation
is very interesting for model-based generation of plant models because the so-
called hybrid differential algebraic equations (HDAE), see e.g. [11] Appendix
C, are the mathematical foundation of modeling languages such as Modelica
and Simscape. So beyond the numerical properties of a technique we will watch
out wherever they are suitable for model-based code generation.

1 Introduction

The modeling process takes place on several levels of abstraction: In a certain way,
the top level is the least abstract because on this level one can still deal with the
real object, which is set by reality. The real object serves as a model for the ”phys-
ical model”. This process is based on physical simplification: Geometrical details
and effects, e.g. temperature dependency, need to be neglected. The mathematical
representation of this physical model is now the ”mathematical model”. This math-
ematical model is taken to construct a numerical model. The model finally gained
is then used in simulation studies. Modelica tools or Simscape give the modeler an
opportunity to design the plan model primarily on the physical level and not on the
mathematical one. Latter one is carried out with the help of modeling tools such
as Simulink or by directly coding the model to C/C++. If these model based code
generation tools were used in a perfect world, there would be only little need for
the modeler to bother about the mathematical level. On the numerical level there
would be no bother at all. Unfortunately this is not the case up to now. Modelers
still need a lot of knowledge about all levels of modeling, including the numerical

1

level. This is particularly true for real-time simulation. The purpose of this paper is
to improve this type of simulation by evaluating and adapting established methods
for real-time use case. It is well known that the numerical simulation of DAE with a
high index requires a high level of effort and care. As part of an automatic code gen-
eration from physical models some approaches in the literature are hard to apply, if
at all. The reason is that they require more knowledge than a DAE system without
modeling-context can provide to a code generation software. Even with more data
about the context the skills how to treat the system are hardly capable to be set in
todays software expert systems. Beyond this in some techniques, like Baumgarte’s
method, parameters depend on the discretization and the used integration method.
This has already been pointed out by Ascher et al. [1] and seems to be still state of
the art for modern simulation tools, see [14]. In consequence, we do e.g. not consider
Baumgarte’s method in this paper because it seems impossible up to now to choose
an optimal set of parameters automatically for such a general use case. Neither
do we consider approaches limited to special application areas such as mechanical
models because we are looking for general approaches to multi-physical tools.

1.1 Requirements for real-time simulation

Performance must be defined with respect to whether there are real-time require-
ments or not. Most numerical simulations are carried-out without real-time re-
quirements. In such cases ’performance’ means that the simulation is completed
as quickly as possible. This goal is frequently followed by means of continually or
temporarily large time steps. The latter are the outcome of adaptive techniques.
On the one hand, a time step of ∆t =1e-3 seconds is in most simulations considered
to be abnormally small. Hence, it would only be used in an emergency for a limited
number of time steps. On the other hand, ∆t =1e-3 seconds is the typical time
step size of a HIL simulation with hard real-time requirements. Hence, it is fairly
reasonable to explore whether techniques, generally considered as inefficient in the
literature, may perform well in real-time simulation. In the context of many ap-
proaches this question has not been answered yet because real-time simulation gains
only little attention in numerical research. Even less attention is paid to high index
DAE in this context. For example, explicit Runge-Kutta approaches combined with
projection methods are often regarded to be quite efficient techniques in the field of
differential algebraic equations with a high index (see e.g. Hairer et. al. [7]). But
the used Runge-Kutta style solver DOPRI5 is unsuitable for real-time simulation,
even if it is the basis of the MATLAB and Simulink solver ode45 and so nearly an
industrial standard because as an adaptive solver it is designed to achieve accuracy
and stability by chosen variable time steps sizes. We can therefore summarize that
we are looking for approaches with fixed time step. The CPU costs per time step
must be predictable, and the technique must meet high requirements with respect
to stability and accuracy.

2

1.2 Test case: Lagrangian formulation of a pendulum

As test case we are going to use the Lagrangian formulation of a mathematical
pendulum with a mass and a line length of one.

dx

dt
= u ;

du

dt
= λx ;

dy

dt
= v ;

dv

dt
= λy − g

0 = x2 + y2 − 1

We take this set of equations because it is a straightforward standard example of an
index 3 problem, which is, for instance, discussed in [2], [7], [5]. So there are plenty
of data available for. In order to compare the results with [5] and to obtain an exact
period of 2, we choose g=13.7503716373294544. The initial conditions are x = 1,
y = 0, u = 0 and v = 0. It is well known (see e.g. [7] p. 454ff.) that this index-
3 formulation can be transferred to index 1- or index-0 formulation by repeatedly
differentiating the algebraic constraint and replace it by one of its derivatives.

Index = 3 0 = x2 + y2 − 1

Index = 2 0 = x
dx

dt
+ y

dy

dt
Index = 1 0 = λx2 + λy2 − gy + u2 + v2

Index = 0 0 = x2
dλ

dt
+ 2λxu+ y2

dλ

dt
+ 2λyv − gv + 2u

du

dt
+ 2v

dv

dt

As we can see, it is in the Index-1 formulation easy to express lambda out of the
other values:

λ :=
−gy + u2 + v2

x2 + y2

In other words, no matter if we choose to use an index-1 integrator such as IDA
or a standard ODE integrator like CVODE - both are part of the Sundial software
collection [8]. Generally it makes sense to stop at an index-1 formulation, as long
as the formulation can be transformed into a form that is compatible to an ODE.
But first we should explain why the way most Modelica tools deal with these kinds
of equations seems to be unsuitable for us.

2 Considered and adapted techniques

2.1 Simulation using the Pantelides algorithm and dummy derivatives

Most Modelica tools use a mixture of the dummy derivatives approach [10] with
the Pantelides Algorithm [12], which was designed to initialize DAE. The resulting
algorithm is described by Cellier and Koffmann (see [2]). One reason for using it
might be that it leads to a straightforward code generation that can be used with
standard ODE integrators. The discussion by Cellier and Koffmann ([2], chapter
7.8) e.g. shows some problems that occur when this algorithm is applied to the

3

index-3-formulation of the pendulum. To cut a long story short: it fails completely,
no matter if it is combined with techniques like inline- or mixed-mode integration.
One may argue, as Cellier and Koffmann do, that a smart modeler should use the
following index-1 formulation to describe the pendulum.

dϕ

dt
= θ ;

dθ

dt
= −g sin(ϕ)

x = cos(ϕ+ 3π/2) ; y = sin(ϕ+ 3π/2)

On the one hand, this represents a fairly sensible strategy and on the other hand,
this means that we limit our options in the fields of library and model construction.
Furthermore, we postulate that users are able to identify the point at which the
differential index of a formulation rises especially in a more complex and connected
model. Relying on the skilled modeler with deep knowledge in all modeling levels
seems to be inappropriate. This is particularly true when the objective lies in the
model-based generation of a software from a mathematical or physical modeling
level. However, not all hope is lost because the Pantelides variant from [2] can
handle this, at least for considerable number of problems, using a technique known
from Dymola as ”dymanic state selection”. In the context of real-time simulation this
workaround is associated with a number of drawbacks. In the very instance in which
a state-switch becomes necessary, a multiple of the original CPU time is needed
per time step. In general, this causes an overrun in the real-time simulation. Let
us recapitulate that predictability of CPU-time is critical for real-time simulation.
Otherwise we would always have to calculate our resources for the biggest possible
CPU resource need during the simulation. Another point to be made is that this
Pantelides variant is not fully theoretically understood. For example: For a while
a lot of people thought that the structural index used by the Pantelides algorithm
is +/-1 the same as the differential index of the numerical theory, but Reissig,
Martinson and Barton manage to demonstrate (see [13]) that in some cases an
equation of a differential index 1 may have an arbitrarily high structural index.
Now it is proved that the Pantelides algorithm might transform a totally harmless
set of equations into an unsuitable appearance. So in fact, the Pantelides algorithm
and its variants - with or without dummy derivatives - are no silver bullets for higher
index problems. Thus, it seems that the real-time simulation of DAE with higher
index calls in for alternatives. We assume that they are already on the market but
have not yet been modified for the use under real-time conditions. For this reason
we will examine approaches and present slight modifications for real-time simulation
in the following section.

2.2 Integration of the index-1- formulation with Multistep Method

So now we use the Index-1/Index-0 formulation with standard ODE-Solvers.

λ :=
−gy + u2 + v2

x2 + y2

4

Figure 1: y-coordinate of the pendulum
computed with the explicit Euler algo-
rithm ∆t = 0.001

Figure 2: BDF(1), drift effect in y-
coordinate with ∆t = 6.25e− 5

dx

dt
= u ;

du

dt
= λx ;

dy

dt
= v ;

dv

dt
= λy − g

A lot of people associate real-time and HIL with the explicit Euler algorithm. One
reason for this might be that it is easy to generate code with an embedded explicit
Euler from Simulink using the RTW. Unfortunately, the results for stiff systems
are often devastating, see figure 1. As a consequence, ”.. for physical models,
MathWorks recommends implicit solvers, such as ode14x, ...”, [9], or to switch for
a better performance to local approaches. In this approach the local solver is by
default the implicit Euler, in other words BDF(1). So maybe the implicit Euler is
an approach for our ODE above? In the numerical community it is quite well known
that it is not. The implicit Euler is afflicted with the drift effect (see figure 2), and
unstable for this problem. But there are numerous alternatives with a fixed time
step size.

2.2.1 Adams–Bashforth Methods

The failure experienced when using the Euler does not mean that all explicit methods
fail. Multi-step methods like the Adams–Bashforth Methods, see e.g. [6] p. 357f.
or [2] p. 122f. for details, share a number of features that we require: Firstly CPU
costs are low, just one evaluation of the given right side f , and secondly one can
achieve high accuracy if the solution is smooth enough. In general the third order
is a good compromise between stability and accuracy. So we try

yn+1 = yn + h

(
23

12
f(tn, yn)− 16

12
f(tn−1, yn−1) +

5

12
f(tn−2, yn−2)

)
.

The advantage of multi-step methods lies in the use of the history of the simulation.
A minor drawback might be the start phase. At the first time step there obviously
is no simulation history to rely on. For this reason we have two major strategies:
We start with an order 1 approach for the first time step, next perform an order
2 approach and then continue the simulation with the order 3. Unfortunately, one

5

loses some accuracy in this starting phase because of the two steps with lower order.
To minimize this effect one should split the first step into three smaller ones. For
a real-time simulation this probably results in an overrun in the first time step,
but on most HIL-Systems one overrun in the first time step is no problem (see
e.g [4]). The other strategy is to assume that the initial situation has endured
for a longer period of time, hence creating an artificial history. For our example
this means x(−2∆t) = x(−∆t) = x(0) = 1 ; y(−2∆t) = y(−∆t) = y(0) = 0
and u(−2∆t) = u(−∆t) = u(0) = 0 ; v(−2∆t) = v(−∆t) = v(0) = 0. In other
situations, however, its not physical. In other words, it cannot be generalized. The
reason why we use it is to avoid initialization effects for the numerical test.

2.2.2 Backward Differentiation Formulas

Backward Differentiation Formulas, for a detailed description see [7] p. 246ff. or
[2] p. 128ff., are in contrast to Adams–Bashforth Methods implicit linear multi-
step methods. These methods are particularly suitable for solving stiff differential
equations. Our ODEs generated out of DAE are very often fairly stiff, so they
seem to be a natural approach. However, the use of implicit methods is objection-
able because they seem to undermine the predictability of CPU resources. They
would iterate until a given error boundary is reached. Knowing this, we use a fairly
widespread approach to make the algorithm predictable. We limit the number of
Newton-iterations. The Number of Newton iterations needed to fulfil a given limit
of error depends, of course, both on the initial value and on the problem as a given,
unchangeable factor. If we take the value from the last time step as the initial
value for the next time step, it becomes clear that a smaller time step size leads
to better initial values. In our test case with time step size ∆t =1e-3 the average
number of Newton iterations per time step to achieve a residual smaller than 1e-10
is 2. Because of its good mixture of stability and accuracy we choose the BDF(3)
scheme.

11

6
yn+1 − 3yn +

3

2
yn−1 −

1

3
yn−2 − hf(tn+1, yn+1) = 0

For the initial values back in time we use the same approach as for the Adams–
Bashforth Methods. Higher order BDF methods have good properties concerning
DAE of low order index anyway. That is one reason why they are the basis of the
DAE-Index-1-solver DASSL. Therefore it makes sense to test them for our trans-
formed index-1 problem. The first challenge is: Can we avoid a drift effect using the
typical HIL time step size? As you can see from the table in section 4 the approach
looks very stable.

3 An inexact projection approach

Concerning stability, numerical literature identifies a residual risk in the restrictive
application of high order BDF or Adams-Bashforth methods to high order DAE.

6

Maybe the typical small time step sizes in real-time simulation save our necks but we
would like to explore whether stability can be improved by projection techniques (see
e. g. [7], p. 470ff.). Unfortunately, the methods applied to this problem generally
make use of information that an automatic code generator often does not have. The
process of embedding these data is quite difficult. The successful application of these
approaches, e.g. discussed in the paper [5], to a huge set of equations, which are not
sorted by application domain, derived from a multi-physical tool such as Modelica
tools, seems very unlikely at this moment. It seems easier to use a technique based
on the concept of dealing with high order DAE by using overdetermined approaches
(see e.g. [7] p. 477ff.). In this case one just assembles all the equations that arise
during the generation of the index-1- formulation. This leads to a set of equations,
containing more equations than degrees of freedom. In our test case this will look
like this:

dx

dt
= u ;

dy

dt
= v ;

du

dt
= λx ;

dv

dt
= λy − g

0 = x2 + y2 − 1 ; 0 = xu+ yv

This analytical problem is in actual fact not overdetermined because we can find a
solution, so that the residual is zero. The set of equations can be solved exactly.
But we need to discretize these equations to simulate them. We do that using the
BDF approach which leads to

dy

dt
≈ 11

6
yn+1 − 3yn +

3

2
yn−1 −

1

3
yn−2

and similar expressions for the other derivatives. The result is a discrete system
which cannot be solved exactly. However, this is not our goal anyway. We will per-
form only a very limited number of iterations of a kind of Gauss–Newton algorithm.
The result is an inexact projection approach.

4 Results

We can easily compare the results at t = 100 because we know that the period of the
solution is 2. There we define RES := |x2 − y2 − 1| and ERR := ∆x+ ∆y +RES.
In the column Newton − Steps the first summand is the number of steps per time
step for the BDF part and the second for the inexact projection. Beyond this, we
compute a reference solution based on the formulation presented in section 2.1. The
reference solution is computed by ode15s. The parameter ’RelTol’ is set to 1e-12
and AbsTol to 1e-14. The goal of this reference solution is to give us a feeling
for the global error and its development. In Figure 3 we can see the difference
between the Adams–Bashforth(3) followed by a single inexact projection step. In 4
the same is displayed for the BDF(3), with only one single newton step followed by
a single inexact projection step. Both seems to be very stable. While the implicit
approach performs better for t = 100, as one can see from the table above, the
Adams–Bashforth(3) variant seems altogether preferable.

7

Figure 3: y-coordinate: Comparison
Adams–Bash.(3) + projection
approach, ∆t = 0.00025 with ode15s

Figure 4: y-coordinate: Comparison In-
exact BDF(3) + projection approach,
∆t = 0.00025 with ode15s

Method Newton Pro- ∆t ∆x ∆y RES ERR
-Steps jection or Tol

Results achieved with the methods discussed above
BDF(3) 2+0 No ∆t = 1e-3 1.8e-5 5.8e-6 3.7e-5 6.2e-5
Precond-BDF(3) 1+0 No ∆t = 1e-3 2.2e-5 1.2e-5 4.5e-5 8.0e-5
Precond-BDF(3) 1+3 Yes ∆t = 1e-3 1.1e-9 4.4e-5 2.8e-10 4.4e-5
Precond-BDF(3) 1+3 Yes ∆t = 5e-4 2.6e-11 5.8e-6 1.7e-11 5.8e-6
BDF(3) 1+0 No ∆t = 1e-3 6.4e-5 7.6e-5 1.2e-4 2.7e-4
BDF(3) 1+0 No ∆t = 5e-4 9.4e-6 1.1e-5 1.8e-5 3.9e-5
BDF(3) 1+0 No ∆t = 2.5e-4 4.2e-6 5.7e-6 8.5e-6 1.8e-5
Adams–Bash.(3) 0+0 No ∆t = 1e-3 2.1e-5 1.1e-5 4.2e-5 7.5e-5
Adams–Bash.(3) 0+0 No ∆t = 5e-4 2.6e-6 9.6e-7 5.3e-6 8.9e-6
Adams–Bash.(3) 0+0 No ∆t = 2.5e-4 3.3e-7 8.0e-8 6.6e-7 1.0e-6
Adams–Bash.(3) 0+1 Yes ∆t = 1e-3 2.4e-9 7.1e-5 2.9e-10 7.1e-5
Adams–Bash.(3) 0+1 Yes ∆t = 5e-4 7.1e-11 1.2e-5 1.8e-11 1.2e-5
Adams–Bash.(3) 0+1 Yes ∆t = 2.5e-4 2.1e-12 2.3e-6 1.1e-12 2.3e-6
BDF(3) 1+1 Yes ∆t = 1e-3 1.0e-9 4.4e-5 1.7e-10 4.4e-5
BDF(3) 1+1 Yes ∆t = 5e-4 2.2e-11 5.8e-6 1.0e-11 5.8e-6
BDF(3) 1+1 Yes ∆t = 2.5e-4 5.9e-13 7.2e-7 6.7e-13 7.2e-7

Results from [5] with a different projection approach
MKS-DAEOL - Yes Tol =1e-5 2.4e-8 2.2e-4 7.2e-10 2.2e-4
MKS-DAEOL - Yes Tol =1e-6 9.7e-9 1.4e-4 5.9e-11 1.4e-4

The BDF (3), however, seems to be more stable when it is used in a long term test
with a maximum duration of one hour. Its tendency to run out of phase is more
pronounced as in the case of the BDF(3), which generally steals a bit of system
energy. Beyond this we see that the inexact approach with only one newton step
and one projection step per time step performs very well for these typical HIL time
step sizes. Moreover it shows very good reduction rates near the third order in
time. We also tried to increase the performance or accuracy of the BDF approach
by preconditioning it with the result of the Adams–Bashforth method, but this did
not work well. In general both the explicit and the implicit approach are improved
applying a single projection step using over-determinated system.

8

5 Proposal for a Parallel Real-time Algorithm

Our survey demonstrates that a high order BDF or Adams–Bashforth approach
combined with a single projection step is the best technique for the problem class
discussed in this paper. Wherever we use an explicit or an implicit approach we
need at least to assemble a Jacobi matrix and factorize it into a QR- or a LU-form,
respectively. If we performed an assembling and a decomposition in every iteration

Figure 5: Tasks in a Parallel Real-time approach

step this would probably be hard to achieve in 1ms real-time. Thus, we intend
to turn to a simplified Newton approach as described, for instance in [3] p. 52ff.
However, the shift to a simplified Newton approach will not lead to a real-time
compatible technique. Beyond this one has to use the power of current multicore
architectures also that tend to be the standard for HILs as well. With four cores
it is possible to keep all I/O and OS aspects on one core, e.g. Core4, and use the
remaining three cores for the computation. The basic architecture is displayed in
figure 5. As a result, the Jacobi matrix is only updated in the simplified Newton
approach if the computation is finished. This procedure results in an algorithm
whose turnaround is highly predictable time in real-time simulation.

6 Conclusion and Future Prospects

We gave an outlook on how we hope to produce an algorithm that can use the
power of multi-core architectures to simulate industrial size DAE systems in real-
time without making too much use of the unreliable approaches discussed in section
2.1 with their drawbacks and uncertainties. Of course, for problems with a low
structural index of 0 or 1 it will always be more efficient to use the approaches of
section 2.1. One of our future prospects is to verify that accuracy and stability can
be retained using this parallel approach. Moreover, a deeper analysis of the process
will be considered in future publications. We have shown that by using common
multistep methods, explicit and implicit ones, it is even possible to simulate high
order DAE with a very limited number of iterative steps. A single projection step can
improve the results significantly. But beyond this, the presented approaches might

9

support a least square modeling paradigma. When ODE integrators are regarded
as preconditioners for an overdetermined system, this obviously leads to a direct
modeling of overdetermined systems, which may be quite useful in some applications.

References

[1] U. M. Ascher, H. Chin, and S. Reich. Stabilization of daes and invariant man-
ifolds. Numer. Math, 67:131–149, 1993.

[2] F. c. E. Cellier and E. Kofman. Continuous system simulation. New York, NY:
Springer, 2006.

[3] P. Deuflhard. Newton methods for nonlinear problems. Affine invariance and
adaptive algorithms. Berlin: Springer, 2004.

[4] dSPACE GmbH. dSPACE FAQ 242 Handling Overrun Situations, 2011.

[5] E. Eich. Convergence results for a coordinate projection method applied
to mechanical systems with algebraic constraints. SIAM J. Numer. Anal.,
30(5):1467–1482, 1993.

[6] E. Hairer, S. P. Nø rsett, and G. Wanner. Solving ordinary differential equations.
I: Nonstiff problems. Berlin: Springer, 2010.

[7] E. Hairer and G. Wanner. Solving ordinary differential equations. II: Stiff and
differential-algebraic problems. Berlin: Springer, 2010.

[8] A. Hindmarsh, P. Brown, K. Grant, R. S. S.L. Lee, D. Shumaker, and C. Wood-
ward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation
Solvers. ACM Transactions on Mathematical Software, 31(3):363–396, 2005.

[9] The MathWorks, Inc. MATLAB 2011a Documentation, Simscape, 2011.

[10] S. E. Mattsson and G. Soederlind. Index reduction in differential-algebraic
equations using dummy derivatives. SIAM J. Sci. Comput., 14(3):677–692,
1993.

[11] Modelica Association. Modelica Language Specification - Version 3.2, 2010.

[12] C. C. Pantelides. The consistent initialization of differential algebraic systems.
SIAM J. Sci. Stat. Comput., 9(2):213–231, 1988.

[13] G. Reissig, W. S. Martinson, and P. I. Barton. Differential-algebraic equations
of index 1 may have an arbitrarily high structural index. SIAM J. Sci. Comput.,
21(6):1987–1990, 2000.

[14] G. D. Wood and D. C. Kennedy. Simulating mechanical systems in Simulink
with SimMechanics. Technical Report 91124v00, 2003.

10

