
Modelica Simulator Compatibility - Today and in Future

Jörg Frochte

Hochschule Bochum

Department of Electrical Engineering and Computer Science

Höseler Platz 2, 42579 Heiligenhaus, Germany

email: joerg.frochte@hs-bochum.de

Abstract

In this paper we would like to give a small snap-

shot in time on Modelica tool compatibility today,

and discuss strategies for its improvement in order to

keep it on a high level. Especially we would like to

consider approaches for semi-automatic test and ve-

rification frameworks as well as to develop different

levels and definitions on Modelica tool compatibili-

ty.

Keywords: Modelica language; simulation and de-

sign tools; quality and compatibility management

1 Introduction

The Modelica language grows as well in com-

plexity as in scope and becomes a mighty tool to de-

scribe models from very different domains. Beyond

this the number of tools using the Modelica language

has increased to the benefit of the users. A various

set of compatible simulators decreases the dependen-

cy on a single tool provider, allows exchange be-

tween different modelers using different tools, and –

because every development of a model and its main-

tenance is not for free – it offers a high degree of

investment security.

But there are dangers to be avoided as well. A di-

verging interpretation of a standard and a heteroge-

neous set of vendors may lead to unpleasant scena-

rios for users and library providers.
Compatibility is not an easy task for a complex

declarative language which is the base of model-

based software generation. Beyond the language and

its interpretation the results given by the generated

code may differ based on various parameters like the

chosen integrator and its boundaries for relative and

absolute errors. So some variations in the results are

allowed and expected, some are not.

Drawing a comparison with C++-Compilers it is

expected that the quality of the generated executable

differs, e.g. concerning performance. It might be ac-

cepted that not every compiler can handle any part of

the new C++ standard, but it falls beyond the pale, if

source code is successfully compiled and executed,

and finally provides totally different results based on

the used compiler.

In order to receive an impression how compati-

ble Modelica tools are among themselves and as well

among the standard we took a snapshot of four tools,

mostly demo and testing versions, and gave them

quite tiny models that can be translated with limited

versions.

For us the fact which tool can handle what kinds

of models is of minor interest, because this will

properly change with every new version. More im-

portant for us is the answer to the question if there is

already a diverging interpretation of the standard or

if this issue has been of no interest so far. In this case

we could assume that there will probably be a grow-

ing need for measures guaranteeing quality as well as

compatibility, which have to be presented later on.

2 Snapshot on Modelica tool compa-

tibility

Let us start with a scenario in which two develop-

ers are using different tools to model and simulate.

Now developer A and B exchange models, given in

Modelica source code, and naturally they both expect

no problems, because they meet the Modelica stan-

dard. Because of the grown complexity and increas-

ing number of interpretations of the standard this

may run ill and so it may turn out that an easy ex-

change is not possible. We distinguish between three

different kinds of causes presented in the following

sections.

2.1 Lacking support of language elements

The lacking support of language elements is ea-

siest to handle for the users. In this case the transla-

tion of the Modelica model will fail and provide a

hint which language element is not supported. In a

lot of Modelica tools a common non-provided lan-

guage element is the else-when-element in the equa-

tion section of a model. This type of compatibility

problem is annoying but it causes no danger.

A good example is the following model:

model A

 Real x;

 Real a(start=2);

equation

 when {time > 0.5,x > 0.7} then

 if time > 0.55 then

 a = 3;

 else

 a = 4;

 end if;

 elsewhen time > 0.6 then

 a = 5;

 end when;

 der(x) = 1;

end A;

Model 1: else-when in equation section

It turned out that in our snapshot of four Modelica

tools only one could translate and simulate the model

above. Two of them were not able to translate it and

one generated code but directly aborted using the

compiled program.

2.2 The generated code

The next cause has its roots in the different skills of

the tools to optimize code and handle tricky situa-

tions concerning e.g. index reduction. Most tools use

a more or less straightforward implementation of the

Pantelides Algorithm [4], extended with dummy de-

rivatives (s. e.g. [5] or [1], chapter 7). In some situa-

tions this is not always enough and may lead to non-

executable results. For example, this combination of

inductors and resistors cannot be simulated in every

Modelica tool:

Model 2: advanced index reduction

These kinds of compatibility problems are in a way

in between, if they are real compatibility issues at all.

The quality of code generation and GUI is the reason

for a user choosing one tool or another. So on one

side diverging results in quality should be expected

and respected, but in any case it would be interesting

to measure it. On the one hand the tool provider is

presumably keen on increasing the quality of his

product. And on the other hand, if the results were

published, it may even help the customer to choose a

Modelica tool. So we think these are the kinds of

variations in the results that are allowed, expected,

and do not touch the goal of standardized and com-

patible language.

However, if the code is executable and runs with-

out a warning, which was not the case for any tested

tool, this scenario comprises some risks. So like it

seems to be now, a termination of the simulation as

soon as possible should always be the default han-

dling of such cases. Thus we assume that in most

cases the simulation will be directly aborted if such a

problem arises.

2.3 Different interpretation of language ele-

ment

In contradistinction to lacking support of language

elements or variations in the code quality a different

interpretation of language elements of the various

Modelica tools may lead to more serious problems.

Let us have a look at the following example:

class A

 class C

 Real t(start=-2);

 Real x;

 equation

 der(x) = t;

 algorithm

 when time > -0.1 then

 t := time + 0.1;

 end when;

 end C;

 C c;

end A;

Model 3: when and HDAE initialization (I)

All of the provided examples are very small and

can be evaluated in most test or demo versions of

Modelica tools. From a theoretical point of view and

our interpretation of the Modelica standard [5] the

initial value of t should be -2. In our test it turned out

that just one of the tested Modelica tools computed

the result -2 and most of them started with t = 0.1.

Independent of the correct value, the interesting ef-

fect for us is that the whole simulation may run diffe-

rently now. In the next model, the problems might

have their cause in interpretation or implementation

of initial conditions and equation reduction.

model A

 Real x(start=7);

 Real y,z;

 flow Real a[2,3];

equation

 z = -a[2,3];

 z=x;

 y=z;

 a[1,1] = 0;

 a[1,2] = 0;

 a[1,3] = 0;

 a[2,1] = 0;

 a[2,2] = 0;

 der(a[2,3]) = 1;

end A;

Model 4: Transfer of start values

In our interpretation the resulting equation x=y

should propagate the initial value, so that the simula-

tion starts with x=y=z=7 and a[2,3]=-7.

Our point of view is that a consistent initial value

should always be tried to be propagated directly, in-

dependent of an additional attribute like fixed=true.

But in some tools start values are not propagated

and so the simulation starts with different initial val-

ues. The effect is of course a simulation with totally

different results. A possible explanation might be

that some tools call the initial function with x=y=z=7

and a[2,3]=-7 and try to find a consistent set of va-

riables based on these initial values. Whereas the

other tools start with this procedure with x=7 and

assume that this information will be propagated dur-

ing the DAE initial problem.

Finally let us look at the following very small

model 5:

model A

 Real x(start=2);

 Real y(start=3);

equation

 der(x) = 1;

 when x > 1 then

 y = pre(y) + 1;

 end when;

end A;

Model 5: when and HDAE initialization (II)

In the Modelica Standard 3.2 ([5]), section 8.3.5

the language element is defined as follows: “The

statements within a when-equation are activated

when the scalar expression or any of the elements of

the vector expression becomes true.“ So it could be

translated in an if-condition like this:

if (boolean) and not pre(boolean)

In combination with the techniques for an initiali-

zation after an event indicated on page 226 of [5] -

the init situation is slightly the same - we come to the

conclusion that the condition should only be acti-

vated, if x>1 has been logical false before and is now

logical true. This situation is quite tricky for a lot of

Modelica tools. We think that x is equal to 2 imme-

diately, and the state x has a positive derivative dur-

ing the whole time. Therefore, the when-cause

should never be activated and so y is equal to 3 all

the time. Just one Modelica simulator handled the

situation like this, all the others computed y=4.

So we have got two situations: model 3, in which

the time value has to be interpreted, and model 5,

which includes an initial value for x. In both situa-

tions the when-language element is misinterpreted

during the initial phase. In case of model 5 one might

argue about the start value of x, but obviously the

time value as in model 3 is never negative.

We tested some more models, and as well as in

the presented ones we found a few similar results. So

we can conclude that there are diverging interpreta-

tions of the standard and that it makes sense to think

about strategies in order to avoid this.

3 Suggestion of semi-automatic test

and verification frameworks

The first step in our strategy is briefly presented

in the following figure:

Figure 1: Test Database and models with proved

results

The most important aspect could be to create a

database with tiny Modelica models which contain a

single element of the Modelica standard one would

like to have tested. The models themselves should be

tricky for the translation process, but so small that

the results can be exactly verified by a human based

on the common interpretation of the Modelica stan-

dard. This is very important because certainly it is

not proved that Modelica tool A in the figure is free

from errors.

These tiny models are in a way academic and

their benefit is that the correctness of the results can

be proved. When a correct pair of model and result

has been created, both are added to the database.

This is the most important aspect for a check for

compatibility. But it is hard to collect a lot of these

models and it might not be possible to get all com-

plex side effects. So beyond this, one should add

“applied models” to the database:

Figure 2: Test Database and applied models with

reasonable results

In general, no human can prove the correctness of

a complex model like this. So in this case it is just a

check if the results are reasonable or not. If they are

reasonable the reference results as well as the model

are added to the database. In the next step it makes

sense to distinguish between these different kinds of

models:

Figure 3: Semi-automatic test scenario

With this database it would now be possible to

test the Modelica tools on Standard compatibility at

least semi-automatically. A checker program can

pick up the Modelica model with its associated refer-

ence results, simulate the model with the Modelica

tool under test and compare the results. The compar-

ison of the results needs a little bit a fuzzy approach,

because it is unlikely that the generated code will

produce totally the same results as in the reference

solution. There are a lot of interesting approaches,

see e.g. [8], to compare models and their results in a

(semi)-automatic way. For simplicity let us assume

that all variables of the model are stores in a vector x

and the corresponding reference solutions in a vector

r, then one might check for |xi(t) - ri(t) | < tol.

Another important benchmark value should be the

time of the event as well as the initial values after the

event.

If every compiled Modelica code uses a different

integrator for the HDAE, this might lead to serious

problems for the compression, so just for this

benchmark purpose one should fix a freely available

Open Source integrator like IDA (s. e.g. [3]). With a

fixed integrator such a test should be possible.

But why do we call this a semi-automatic test for

it looks like a full-automatic test until now? Respon-

sible for this are the failures which may occur when

simulating or translating the “applied models”. In

this case it is not possible to exclude the possibility

that the reference results are wrong. So in some cases

it might be necessary to reevaluate the reference re-

sults for such a model.

4 Levels of compatibility and quality

control

With such an infrastructure a validation service

could be set up. Nevertheless, this would just pro-

duce a list of successfully and not successfully han-

dled models, but no solution to the fundamental

problem. So at that point one would be able to meas-

ure the language respectably the tool compatibility

and achieve information about what to improve. But

this is just one aspect of two. The two challenges for

the compatibility issue on the long run are firstly the

growing complexity and secondly measurement and

control. But up to now we majorly dealt with the

measurement aspect. How could growth of complex-

ity be reduced without acting as a brake upon new

innovations in the Modelica language?

A possible approach might be introducing differ-

ent levels of complexity in the Modelica language.

The highest level could be today’s Modelica lan-

guage with all its language elements as well as up-

coming innovative and progressive features. The

lower levels should be becoming more and more

conservative concerning changes and less complex:

1. (Full) Modelica

2. Simple Modelica

3. Flatmodelica

One might think that Flatmodelica already exists

for very often the term “flat model” is mentioned,

and therefore one has an association, because e.g.

some tools allow exporting “Flatmodelica” or a “flat

model”. But this is not true, for there is no official

standard defining Flatmodelica or at least a “flat

model”. What comes close to a definition is written

in [2], chapter 18, but anyway it is not a formal lan-

guage description. The name suggests that there are

no more dependencies concerning libraries. Beyond

this, it implies that no more inheritance has to be car-

ried out, but this is hard to be done, because nearly

everything in Modelica is a class. So e.g. the ques-

tion occurs whether records are part of Flatmodelica

or not.

Maybe we should motivate why it could make

sense to introduce different levels of complexity and

development speed in the Modelica standard.

The major reason could be that no tool has been

able to implement the full Modelica language up to

now. If the language keeps on growing, as during the

course of recent years, it is hardly probable that this

status will change.

To illustrate this, let us have a look at the follow-

ing model:

class A

 Real x[2, 3];

 Integer i=7;

 Integer j=8;

 Real y;

equation

 for i in {1,2}, j loop

 x[i, j] = i*A.j;

 end for;

 for i in {3,4}, j loop

 x[i, j] = A.i*j;

 end for;

 y=time*x[2,2];

end A;

Model 6: Automatic detection of array bounds

This model exclusively uses valid Modelica lan-

guage, but in our tests none of the tools has been able

to generate code and simulate it successfully. The

used language elements are not new in Modelica 3.2,

so we can exclude the effect that the tools were una-

ble to implement them in time. An explanation might

be the high demands of such dynamic language ele-

ments for the data structures of a Modelica tool. This

model is not an isolated incident; let us for example

regard this model:

model A

 record R

 Real x[1,1];

 Boolean b;

 end R;

 Real w;

 R r1(x={{1}}, b=false);

 R r2(x={{2}}, b=true);

 R r3[2];

 equation

 r3[1] = r1;

 r3[2] = if time > 0.5 then

 (if time > 0.6 then r1 else r2)

 else r2;

 der(w) = r3[2].x[1,1];

end A;

Model 7: Usage of records

Records as well as the automatic detection of ar-

ray bounds and especially their dynamical handling

cause just one problem in many tools. The effects

probably differ because of the different data struc-

tures used to translate the Modelica models.

So we can conclude that full Modelica, as fast

developing language standard, is not predestinated as

cross-tool exchange language. Beyond these features

and aspects, there are a lot of chapters in the Modeli-

ca standard that could likely be excluded for a Sim-

ple Modelica approach. Examples might be [5], sec-

tion 10.5.1 “Indexing with Boolean or Enumeration

Values”, chapter 14 “Overloaded Operators”, some

of the redeclaration features described in chapter 7.3

or the expandable connectors from chapter 9.3.1.

Such features proposed to be excluded from Sim-

ple Modelica in comparison to full Modelica are

mostly the very dynamic ones and therefore hard to

be validated using the proposed semi-automatic test

and verification framework, especially but not only

concerning more complex models. In fact the sug-

gested test and validation infrastructure will be more

efficient on the lower levels and always less efficient

on the higher ones. One reason would be the con-

servative progressing approach and another one li-

mited amount of language elements and features.

Because the mentioned features are apparently

difficult to be implemented for Modelica tool ven-

dors, it would probably be possible to achieve a bet-

ter tool compatibility on the lower levels compared

to the higher ones. Beyond this, the introduction of

less featured levels of Modelica might even lead to a

provision of a base for the exchange of Simple or

Flatmodelica models to and from the proprietary

Simscape language, s. e.g. [8], invented by The-

MathWorks. To support such a scenario for Simple

Modelica the redeclaration techniques described in

[5], section 7.3, might need further restrictions or

simplifications. Anyway it is of course unlikely that

this will work without a conversion procedure, but a

conversion from Simple Modelica to Simscape might

be possible, while the more complex and mighty Full

Modelica is a formidable challenge for an automatic

conversion from and majorly to Simscape.

So Simple Modelica and Flatmodelica as subsets

of full Modelica could provide grand strides con-

cerning cross-tool exchange, tool compatibility and

finally make formal tests discussed in section 3 much

more efficient.

If we had these two subsets of Modelica we could

judge tools by their capacity to import, export and

translate models on three different levels. To achieve

a simple measurement for users one may introduce a

bronze, silver, gold and platinum tag on the different

levels. The platinum tag will just be given, if a tool

can handle the full test without failures, the gold tag

with a given percentage and so on. The suggested

infrastructure could be set up by a central organiza-

tion like the Modelica Association.

As discussed above it is very unlikely that a tool

would reach the platinum level for the latest few full

Modelica language versions. Most tools could

achieve gold and silver, but obviously this would not

be the perfect exchange level because every tool

might miss different language aspects. On the more

conservative lower language levels like Simple

Modelica or Flatmodelica a lot of tools could reach

platinum level and therefore provide a good base for

a cross-tool exchange with a consistent language in-

terpretation.

For a kind of “flat model”, like e.g. in Dymola,

can be generated from full Modelica without any loss

of functionality it should be possible to do the same

with a formal defined Flatmodelica and a Simple

Modelica. So there won’t be any loss of functionali-

ty, just a loss of structure and convenience. This is

the reason why Simple Modelica as intermediate

stage between full Modelica and Flatmodelica makes

sense. Flatmodelica as kind of textual description of

an HDAE is always possible, but it is hard to main-

tain a model described in Flatmodelica while it is

hard to achieve a high compatibility level for full

Modelica. So Simple Modelica together with a semi-

automatic test and verification framework could lead

to a high degree of investment security and indepen-

dence for users and library providers.

5 Conclusions

So finally we conclude that the desirable growth of

Modelica tool vendors and language capacity leads

to a lot of benefits but also to the issue of compatibil-

ity which today and in future will become more and

more important.

We have shown that recently there is a need to in-

troduce quality control mechanisms. Beyond this, we

tried to give brief suggestions how it might be possi-

ble to deal with the task of compatibility of Modelica

tools among themselves and as well among the Mod-

elica standard.

References

[1] F. E.Cellier und E. Kofman. Continuous

System Simulation, Springer (2006)

[2] P. Fritzon. Principles of Object-Oriented

Modeling and Simulation with Modelica

2.1, John Wiley & Sons (2004)

[3] A. C. Hindmarsh, P. N. Brown, K. E. Grant,

S. L. Lee, R. Serban, D. E. Shumaker and C.

S. Woodward: SUNDIALS: Suite of

Nonlinear and Differential/Algebraic

Equation Solvers. In ACM Transactions on

Mathematical Software, 31(3), pp. 363-396,

2005.

[4] Mattsson and Söderlind. Index Reduction in

Differential-Algebraic Equations using

Dummy Derivatives, SIAM J. SCI.

COMPUT. Vol.14. No.3, pp. 677-692 (1993)

[5] Modelica Association: Modelica Language

Specification Version 3.2; (March 2010)

[6] C. C. Pantelides. The Consistent

Initialization of Differential-Algebraic

Systems. In SIAM J.Sci.Stat.Comput. Vol.9,

No. 2, (1988)

[7] B. Stein. Model Compilation and

Diagnosability of Technical Systems. In

3rd Int. Conference on Artificial Intelligence

and Applications, pp. 191-197 (2003)

[8] TheMathWorks: Simscape 3 Language

Guide (March 2010)

	Abstract
	1 Introduction
	2 Snapshot on Modelica tool compatibility
	2.1 Lacking support of language elements
	2.2 The generated code
	2.3 Different interpretation of language element

	3 Suggestion of semi-automatic test and verification frameworks
	4 Levels of compatibility and quality control
	5 Conclusions
	References

