
An adaptive operator splitting of higher order
for the Navier-Stokes equations

Jörg Frochte1 and Wilhelm Heinrichs2

1 Arbeitsgruppe Ingeneurmathematik, Universität Duisburg-Essen Campus Essen,
Universitätsstr. 3, 45117 Essen jfrochte@ing-math.uni-essen.de

2 Arbeitsgruppe Ingeneurmathematik, Universität Duisburg-Essen Campus Essen,
Universitätsstr. 3, 45117 Essen wheinric@ing-math.uni-essen.de

Summary. This article presents an operator splitting for solving the time-dependent
incompressible Navier-Stokes equations with Finite Elements. By using a postpro-
cessing step the splitting method shows a reduction factor higher than second order.
In this algorithm a gradient recovery technique is used to compute boundary con-
ditions for the pressure and to achieve a higher convergence order for the gradient
at different points of the algorithm.

1 Introduction

We consider the incompressible time dependent Navier-Stokes equations

∂v

∂t
+ (v · ∇)v − ν∇2v +∇p = f in Ω, t ∈ [0, tend] (1)

∇ · v = 0 in Ω, t ∈ [0, tend] ; v = v0 for t = 0, in Ω , (2)
v = h on ∂Ω, t ∈ [0, tend] . (3)

The solution of these equations on the time intervall [0, tend] are the velocity
v of a Newtonian fluid with the kinematic viscosity ν and the pressure p in a
domain Ω. We assume that Ω is a bounded domain in R2 and that its bound-
ary ∂Ω is polygonal. The boundary conditions are given by a function h on
∂Ω. To solve the Navier-Stokes equations we use a splitting technique with
a postprocessing. The algorithm without postprocessing, called base splitting
algorithm, is related to the one published by Haschke and Heinrichs [2] for
spectral methods. For linear Finite Elements in contradiction to the solution
itself the convergence rate of the gradient is only of first order. To avoid this
and to compute boundary conditions for the pressure which are always a chal-
lenge for splitting techniques a new gradient recovery technique is developed.

2 Jörg Frochte and Wilhelm Heinrichs

Fig. 1. Mesh with 3233 un-
knowns

¡
¡¡

@
@@

@
@@

¡
¡¡

¡
¡¡

@
@@

¡
¡

¡
¡

¡¡

@
@

@
@

@@
@

@@
¡

¡¡

@@
@@¡

¡¡

¡
¡¡

@
@@

s
a
6

@
@@

¡
¡¡ s

ss
ss

s s

d d d d

d

d

dddd

d

d

d

(xj , yj),
j = 1 . . . n

©©©©©¼

³³³)

Fig. 2. Database of
GT /TBR and the Z2

gradient recovery technique

0,010,1
h

max

0,001

0,01

0,1

E
rr

or

TBR || . ||
max

TBR || . ||
L

2

Z
2
 || . ||

max

Z
2
 || . ||

L
2

Fig. 3. Error TBR and Z2

2 The Taylor based gradient recovery technique

Let Th be a triangulation of Ω and T ∈ Th. Thus the linear Finite Element
space is Vh = {uh ∈ C(Ω̄) ; uh|T ∈ P1 for T ∈ Th}. To motivate this gradient
recovery technique we assume that u ∈ C2(Ω) and Ihu = uh ∈ Vh with Ih as
interpolation operator on Vh. To recover the gradient of u at a node a of Th

we use a second order Taylor approximation with the values of uh at a and
n ≥ 5 nodes (xj , yj) in the neighbourhood of a:
uh(xj , yj)− uh(xa, ya) = ux(xa,ya)(xj − xa) + uy(xa,ya)(yj − ya)

+ 1
2
(uxx(xa,ya)(xj − xa)2 + uxy(xa,ya)(xj − xa)(yj − ya) + uyy(xa,ya)(yj − ya)2)

The bold marked terms are the unknowns that are to be computed by solv-
ing a 5 × n-least squares problem. Generally all neighbours of a and also
their neighbours are chosen. Figure 2 shows an example for such a neigh-
bourhood of a. The new Taylor-based recovery technique (TBR) uses the
data from all displayed nodes while a technique like the Z2 recovery [7] uses
only the information from the nodes with filled circles. The greater database
together with a proper weighting [1] improves the results, especially on adap-
tive refined meshes and at the edges of Ω. Figure 3 shows the results of

An operator splitting of higher order for the Navier-Stokes equations 3

the two techniques recovering the partial derivation uhx on a mesh like the
one in figure 1. The data for the gradient recovery derives from a function
uh ≈ sin(π(x− 1)/2) sin(π(y − 1)/2) which is the solution of a Laplace equa-
tion, −∇2u = f . Figure 3 illustrates the fact that the TBR technique shows
higher reduction rates in the L2 norm. Very important for the computation
of the needed boundary conditions for the pressure is the error in the nodal
maximum norm because the maximum error often occurs at the edges of Ω. If
this technique is used for all nodes of a triangulation we will use this according
to the approximated nabla operator by GT uh.

3 The stabilized base splitting

For the approximation of ∂
∂t we use a BDF scheme of third order. The lead-

ing coefficient of the BDF scheme is denoted with β0 and the time step size
with 4t. Similar to the splitting for spectral methods [2] one time step of the
splitting follows the scheme:

Time step in the base splitting

1. Compute a guess (p̄n+1) for the pressure
2. Based on the pressure compute an intermediate velocity ṽn+1

3. Solve the Laplace equation (∗∗) −∇2pupdate = − β0
4t∇ · ṽn+1 ; pupdate = 0

on ∂Ω for the pressure and velocity update
4. Apply the update by pn+1 = p̄n+1 + pupdate ; vn+1 = ṽn+1 + 4t

β0
∇pupdate

In difference to [2] p̄n+1 is the solution of the following Laplace equation:

−∇2p̄ = −∇ · f +∇ · ((v · ∇)v) (4)
⇔︸︷︷︸

∇·v=0

−∇2p̄n+1 = −(fn
1x + fn

2y) + vn
1xvn

1x + 2vn
2xvn

1y + vn
2yvn

2y . (5)

All partial derivations on the right side were built with TBR. The Neumann
boundary conditions are taken directly from the Navier-Stokes equations (1):

∇p = f − (
∂v

∂t
+ (v · ∇)v

︸ ︷︷ ︸
(∗)

−ν∇2v) on ∂Ω (6)

The (∗) is zero for homogeneous zero Dirichlet boundary conditions. In the
case that other boundary conditions are given ∂v

∂t is approximated with a BDF
scheme of third order and the partial derivations are computed using GT . The
Laplace term is approximated by G2

T v1 = v1yy−v2yx , G2
T v2 = v2xx−v1xy . This

formulation is more accurate than vixx + viyy (i = 1, 2). The reconstruction
of second order derivations at the edges still causes more problems than the

4 Jörg Frochte and Wilhelm Heinrichs

recovery of the first order derivations. But generally the quite small kinematic
viscosity ν reduces the influence of this term heavily. With this procedure it
is possible to add fitted boundary conditions for the pressure to the splitting
and also to prevent an unstable behaviour of the algorithm for solutions of
the type v(t, x, y, z) = z(t)g(x, y, z). If p̄n+1 is simply set equal to pn as in [2]
the pressure update step would bump the same mesh based errors stepwise
into the approximated pressure function. For small time step sizes the factor
β0
4t on the right side of the Laplace Equation amplifies this effect which is
prevented with the above displayed procedure.
With the coefficients of the BDF scheme βj(j = 1..3) we set
f̃ = f − GT p̄n+1 − 1

4t

∑3
j=1 βjv

m+1−j and so the intermediate velocity can
be computed explicitly

(
−ν∇2 +

β0

4t
I

)
ṽm+1

i = f̃n+1 − (ve · ∇)ve (7)

or implicitly
(
−ν∇2 +

β0

4t
I

)
ṽm+1

i + (ve · ∇) ṽm+1
i = f̃n+1 (8)

using a kind of Picard iteration (ve = ṽm+1
i) with the initial value ve = vn and

the stop criterion ‖ṽm+1
i − ṽm+1

i−1 ‖ < εPic = 10−3. The self-evident boundary
conditions are taken from (3). The Finite Element spaces for the velocity and
the pressure are chosen to fulfil the inf − sup−condition, so we used triangle
Taylor-Hood-Elements with linear and in the context of the postprocessing
also with quadratic base functions.

4 The multi-grid postprocessing

The main reason for most splittings not to reach an order higher than two in
time is that it seems not possible to compute a stable pressure approximation
p̄ of second order to compute ṽ. With such an approximation the analysis
done by Heinrichs in [3] would advise at least for the Stokes equations to get
a scheme of third order. With a postprocessing step there is a stable way to
compute an approximation of an order higher than one that can be used to
compute ṽ. To do this we use a set of nested Finite Elements spaces. Let Vh/2

be a Finite Element space that was built by a global regular refinement of the
mesh of Vh. VH is such a Finite Element space that Vh together with VH satisfy
the inf-sup-condition, e.g. quadratic base function of the same mesh or again a
global refinement of Vh. Denote now Xh = Vh×Vh and XH = VH×VH . and set
Vh,0 resp. Vh/2,0 as the subspace with the elements that satisfy

∫
Ω

u dx = 0.
First we compute (vn+1

h/2 , pn+1
h) in WH = Xh × Vh,0 and use the results to

perform a splitting step in WH = XH×Vh/2,0. With this technique the number
of Picard iterations in WH can generally be reduced and the intermediate

An operator splitting of higher order for the Navier-Stokes equations 5

velocity can be computed with a pressure approximation of a higher order
than in the base splitting. The following algorithm is an example for the use
of linear base functions, so set H = h/4 and a full implicit treatment of the
nonlinear term. Other variations based on this idea can be found in [1].

0. Compute an initial pressure p0
h at for t = 0 with (5)

Time step with build-in postprocessing

1. Solve the PDE (8) for the intermediate velocity ṽn+1
h/2 using pn

h

2. Solve the Laplace equation (∗∗) in Vh for the pressure and velocity update
3. Apply the update to the velocity vn+1

h/2 = ṽn+1
h/2 + 4t

β0
∇pupdate

4. Solve the PDE (5) and use v̂n+1
h/2 on the right side to get p̄n+1

h/2

5. Solve the PDE (8) for the intermediate velocity ṽn+1
h/4 with the initial value

ve = P v̂n+1
h/2 and p̄n+1

h/2 from step 4
6. Solve the Laplace equation (∗∗) in Vh/2 for the pressure and velocity

update: −∇2ph/2update
= − β0

4t∇ · ṽn+1
h/4 ; ph/2update

= 0 on ∂Ω

7. Apply the update to the velocity and the pressure
pn+1

h/2 = p̄n+1
h/2 + ph/2update

; vn+1
h/4 = ṽn+1

h/4 + 4t
β0
∇ph/2update

8. Compute the restrictions for the next splitting step:
vn+1

h/2 = Ih/2 vn+1
h/4 , pn+1

h = Ih pn+1
h/2

The prolongation between the Finite Element spaces is done with the com-
mon prolongation and restriction from Multigridsolvers. Only in step 8 the
interpolation operator is used. Because of the way the Finite Element spaces
Vh,0 ⊂ Vh ⊂ Vh/2 ⊂ Vh/4 are nested in every part of the algorithm the inf-sup-
condition is fulfilled. Another advantage of this procedure is that many tasks
concerning adaptivity, especially adaptivity in time, can be answered in the
coarser Finite Element spaces. This helps economising CPU costs. Adaptivity
in space e. g. has been tested with the well-known Driven Cavity Problem,
see [1] for further details.

5 Numerical Results

The splitting with and without postprocessing was tested on various test-
problems. Exemplarily the results of the test-problem IV from [1] are dis-
played. Here Ω = {(x, y) ∈ R2|1 ≤ r ≤ 2}, r =

√
x2 + y2 is a spool. The right

side f is fitted so that the solution for the velocity is

v1(x, y, t) = −y(0.25− (r − 1.5)2) sin(2πt) ,

v2(x, y, t) = x(0.25− (r − 1.5)2) sin(2πt)

6 Jörg Frochte and Wilhelm Heinrichs

Table 1. Splitting with and without postprocessing by comparison ; ν = 1/5000

Degrees with Postprocessing without Postprocessing Speed-

∆t of velocity (v1) pressure (p) velocity (v1) pressure (p) up

freedom ‖u − uh‖L2 Quot. ‖u − uh‖L2 Quot. ‖u − uh‖L2 Quot. ‖u − uh‖L2 Quot.

1/8 29408 1.216e-01 - 1.907e-02 - 1.222e-01 - 5.087e-01 - 1.34

1/16 29408 1.768e-02 6.880 2.827e-03 6.746 4.035e-02 3.029 1.145e-01 4.443 1.12

1/32 116672 2.254e-03 7.843 4.260e-04 6.636 6.779e-03 5.952 2.735e-02 4.187 1.07

1/64 116672 3.026e-04 7.448 3.348e-04 1.273 2.247e-03 3.018 8.960e-03 3.052 1.35

and for the pressure p(x, y, t) = y sin(x) sin(2πt). At first glance the splitting
with build-in postprocessing seems to be more expensive than the one without.
But as table 1 shows the splitting technique with postprocessing is with the
same number of unknowns in all numerical tests faster than the one without.

5.1 ’Flow around a cylinder’

Fig. 4. 2D-3 4sec.

A very popular benchmark problem the splitting was tested with is the ’Flow
around a cylinder’ defined by Schäfer and Turek in [6]. For the outflow Γ3

we used like [5] the same boundary conditions as for the inflow. To compute
the drag (cd) and the lift (cl) coefficient we used an ansatz first published for
the stationary Navier-Stokes equations in [4]. Applying it to the unstationary
Navier-Stokes equations leads to the following equations:

cd = −20
∫

Ω

∂

∂t
v · ud + ν∇v : ∇ud + (v · ∇)v · ud − p(∇ · ud) dΩ (9)

cl = −20
∫

Ω

∂

∂t
v · ul + ν∇v : ∇ul + (v · ∇)v · ul − p(∇ · ul) dΩ . (10)

Type 2D-3 (unsteady)
There are different variations of the ’Flow around a cylinder’-Problem defined
in [6]. For the 2D-3 the velocity is simulated over 8 seconds. The figures 5

An operator splitting of higher order for the Navier-Stokes equations 7

Table 2. ’Flow around a cylinder’ with postprocessing

4t t(cd,max) cd. max t(cl,max) cl,max pdiff(8s)

1/400 3.93 2.9509076 5.695 0.49461359 -0.11086049
1/1000 3.934 2.9478232 5.688 0.49117886 -0.11053843
1/1200 3.93 2.9465880 5.686667 0.49084030 -0.11048193

John:04 3.93625 2.9509216 5.6925 0.47811979 -0.11158097

3 3,2 3,4 3,6 3,8 4 4,2 4,4 4,6 4,8 5
2,5

2,6

2,7

2,8

2,9

1/1000
John:04

Fig. 5. 2D-3 : cd

5,5 5,6 5,7 5,8 5,9 6 6,1 6,2 6,3 6,4 6,5

-0,4

-0,2

0

0,2

0,4 1/1000
John:04

Fig. 6. 2D-3 : cl

and 6 show the results with 139344 unknowns for the velocity and 35048 for
the pressure compared to the results computed by John in [5] with quadratic
Taylor-Hood-Elements and 399616 unknowns in v and 50240 in p. John used a
fractional-step-θ-scheme with a step size of 1/800. The intervals for the bench-
mark values defined in [6] are crefd,max = [2.93, 2.97] and crefl,max = [0.47, 0.49].
Table 2 shows the good results which could be computed with a quite low
number of unknowns.

Type 2D-2 (periodic, unsteady)
The variation 2D-2 from [6] usually needs small time step sizes.

Table 3. 2D-2: Results for an adaptive chosen time step size

εTtol 4̄t cd. max cl,max Strouhal

1.0 · 10−3 0.004246 3.2439 1.0104 0.29811
7.5 · 10−4 0.002479 3.2285 1.0031 0.30022

An error indicator

et(tm) ≈
4‖v4tm

2
(tm)− v4tm(tm)‖

3‖v4tm
2

(tm)‖ 4tm+1 =
√

εTtol

et(tm)
4tm

8 Jörg Frochte and Wilhelm Heinrichs

based on vh/2 computed with 4t and 4t/2 was used to choose a proper time
step size in consideration of the stability of the BDF scheme. With this choice
of time step sizes the splitting algorithm with the presented postprocessing
and 555680 unknowns in v and 139344 in p computed the benchmark values
displayed in table 3 with an average time step size 4̄t. The tolerance intervals
for cd are [3.2200,3.2400], for cl [0.9900,1.0100] and for the Strouhal number
[0.2950, 0.3050].

6 Conclusions

The presented algorithm with build-in postprocessing shows an error reduc-
tion in the L2 norm of an order n > 2 in time. It was successfully tested on
analytic problems as well as on standard CFD problems. A very interesting
aspect of the postprocessing with nested grids is that in all numerical experi-
ments it caused no additional CPU costs. Therefor future prospects could be
e.g. the integration of more levels together with the fourth order BDF scheme
for the postprocessing and the use of Finite Elements of a higher order.
Acknowledgment: We would like to thank Volker John for providing his
benchmark data for the ’Flow around a cylinder’ 2D-3 case.

References

1. Jörg Frochte: Ein Splitting-Algorithmus höherer Ordnung für die Navier-Stokes-
Gleichung auf der Basis der Finite-Element-Methode [Diss./Phd-Thesis], Univer-
sität Duisburg-Essen (to be published in Dec. 2005)

2. H. Haschke and W. Heinrichs: Splitting techniques with staggered grids for the
Navier-Stokes equations in the 2d case, Journal of Comp. Phys., 168, 131–154
(2001)

3. Wilhelm Heinrichs: Splitting techniques for the unsteady Stokes equations, SIAM
J. Numer. Anal., 35, 1646–1662 (1998)

4. Volker John and Gunar Matthies: Higher order Finite Element discretizations in
a benchmark problem for the 3D Navier Stokes equations, Internation Journal for
Numerical Methods in Fluid Mechanics, 40, 775–798 (2002)

5. Volker John: Reference values for drag and lift of a two-dimensional time-
dependent flow around a cylinder, Internation Journal for Numerical Methods
in Fluids, 44, 777–788 (2004)

6. M. Schäfer and S. Turek: The benchmark problem ’flow around a cylinder’. In:
Hirchel EH (ed.) Notes on Numerical Fluid Mechanics. Vieweg Verlag Braun-
schweig, (1996)

7. O. C. Zienkiewicz and J. Z. Zhu: The superconvergent patch recovery and a
posteriori error estimates. Part I & II, Int. J. Num. Meth. Engrg., 33, 1331–1382
(1992)

